您好,登錄后才能下訂單哦!
這篇文章主要講解了如何實現(xiàn)numpy庫ndarray多維數(shù)組的維度變換,內(nèi)容清晰明了,對此有興趣的小伙伴可以學(xué)習(xí)一下,相信大家閱讀完之后會有幫助。
numpy庫對多維數(shù)組有非常靈巧的處理方式,主要的處理方法有:
.reshape(shape) : 不改變數(shù)組元素,返回一個shape形狀的數(shù)組,原數(shù)組不變
.resize(shape) : 與.reshape()功能一致,但修改原數(shù)組
In [22]: a = np.arange(20) #原數(shù)組不變 In [23]: a.reshape([4,5]) Out[23]: array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]]) In [24]: a Out[24]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]) #修改原數(shù)組 In [25]: a.resize([4,5]) In [26]: a Out[26]: array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]])
.swapaxes(ax1,ax2) : 將數(shù)組n個維度中兩個維度進行調(diào)換,不改變原數(shù)組
In [27]: a.swapaxes(1,0) Out[27]: array([[ 0, 5, 10, 15], [ 1, 6, 11, 16], [ 2, 7, 12, 17], [ 3, 8, 13, 18], [ 4, 9, 14, 19]])
.flatten() : 對數(shù)組進行降維,返回折疊后的一維數(shù)組,原數(shù)組不變
In [29]: a.flatten() Out[29]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19])
看完上述內(nèi)容,是不是對如何實現(xiàn)numpy庫ndarray多維數(shù)組的維度變換有進一步的了解,如果還想學(xué)習(xí)更多內(nèi)容,歡迎關(guān)注億速云行業(yè)資訊頻道。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。