溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶服務(wù)條款》

Java引用類型原理深度剖析,看完文章,90%的人都收藏了

發(fā)布時(shí)間:2020-07-21 05:53:20 來(lái)源:網(wǎng)絡(luò) 閱讀:3977 作者:Java筆記丶 欄目:編程語(yǔ)言

Java中一共有4種引用類型(其實(shí)還有一些其他的引用類型比如FinalReference):強(qiáng)引用、軟引用、弱引用、虛引用。其中強(qiáng)引用就是我們經(jīng)常使用的Object a = new Object();?這樣的形式,在Java中并沒(méi)有對(duì)應(yīng)的Reference類。

本篇文章主要是分析軟引用、弱引用、虛引用的實(shí)現(xiàn),這三種引用類型都是繼承于Reference這個(gè)類,主要邏輯也在Reference中。

問(wèn)題

在分析前,先拋幾個(gè)問(wèn)題?

1.網(wǎng)上大多數(shù)文章對(duì)于軟引用的介紹是:在內(nèi)存不足的時(shí)候才會(huì)被回收,那內(nèi)存不足是怎么定義的?什么才叫內(nèi)存不足?

2.網(wǎng)上大多數(shù)文章對(duì)于虛引用的介紹是:形同虛設(shè),虛引用并不會(huì)決定對(duì)象的生命周期。主要用來(lái)跟蹤對(duì)象被垃圾回收器回收的活動(dòng)。真的是這樣嗎?

3.虛引用在Jdk中有哪些場(chǎng)景下用到了呢?

Reference

我們先看下Reference.java中的幾個(gè)字段

public?abstract?class?Reference<T>?{
????//引用的對(duì)象
????private?T?referent;????????
	//回收隊(duì)列,由使用者在Reference的構(gòu)造函數(shù)中指定
????volatile?ReferenceQueue<??super?T>?queue;
?	//當(dāng)該引用被加入到queue中的時(shí)候,該字段被設(shè)置為queue中的下一個(gè)元素,以形成鏈表結(jié)構(gòu)
????volatile?Reference?next;
????//在GC時(shí),JVM底層會(huì)維護(hù)一個(gè)叫DiscoveredList的鏈表,存放的是Reference對(duì)象,discovered字段指向的就是鏈表中的下一個(gè)元素,由JVM設(shè)置
????transient?private?Reference<T>?discovered;??
	//進(jìn)行線程同步的鎖對(duì)象
????static?private?class?Lock?{?}
????private?static?Lock?lock?=?new?Lock();
	//等待加入queue的Reference對(duì)象,在GC時(shí)由JVM設(shè)置,會(huì)有一個(gè)java層的線程(ReferenceHandler)源源不斷的從pending中提取元素加入到queue
????private?static?Reference<Object>?pending?=?null;
}

一個(gè)Reference對(duì)象的生命周期如下:


Java引用類型原理深度剖析,看完文章,90%的人都收藏了


主要分為Native層和Java層兩個(gè)部分。

Native層在GC時(shí)將需要被回收的Reference對(duì)象加入到DiscoveredList中(代碼在referenceProcessor.cppprocess_discovered_references方法),然后將DiscoveredList的元素移動(dòng)到PendingList中(代碼在referenceProcessor.cppenqueue_discovered_ref_helper方法),PendingList的隊(duì)首就是Reference類中的pending對(duì)象。

看看Java層的代碼

private?static?class?ReferenceHandler?extends?Thread?{
?????	...
????????public?void?run()?{
????????????while?(true)?{
????????????????tryHandlePending(true);
????????????}
????????}
??}?
static?boolean?tryHandlePending(boolean?waitForNotify)?{
????????Reference<Object>?r;
????????Cleaner?c;
????????try?{
????????????synchronized?(lock)?{
????????????????if?(pending?!=?null)?{
????????????????????r?=?pending;
?????????????????	//如果是Cleaner對(duì)象,則記錄下來(lái),下面做特殊處理
????????????????????c?=?r?instanceof?Cleaner???(Cleaner)?r?:?null;
????????????????????//指向PendingList的下一個(gè)對(duì)象
????????????????????pending?=?r.discovered;
????????????????????r.discovered?=?null;
????????????????}?else?{
???????????????????//如果pending為null就先等待,當(dāng)有對(duì)象加入到PendingList中時(shí),jvm會(huì)執(zhí)行notify
????????????????????if?(waitForNotify)?{
????????????????????????lock.wait();
????????????????????}
????????????????????//?retry?if?waited
????????????????????return?waitForNotify;
????????????????}
????????????}
????????}?
????????...

????????//?如果時(shí)CLeaner對(duì)象,則調(diào)用clean方法進(jìn)行資源回收
????????if?(c?!=?null)?{
????????????c.clean();
????????????return?true;
????????}
		//將Reference加入到ReferenceQueue,開(kāi)發(fā)者可以通過(guò)從ReferenceQueue中poll元素感知到對(duì)象被回收的事件。
????????ReferenceQueue<??super?Object>?q?=?r.queue;
????????if?(q?!=?ReferenceQueue.NULL)?q.enqueue(r);
????????return?true;
?}

流程比較簡(jiǎn)單:就是源源不斷的從PendingList中提取出元素,然后將其加入到ReferenceQueue中去,開(kāi)發(fā)者可以通過(guò)從ReferenceQueue中poll元素感知到對(duì)象被回收的事件。

另外需要注意的是,對(duì)于Cleaner類型(繼承自虛引用)的對(duì)象會(huì)有額外的處理:在其指向的對(duì)象被回收時(shí),會(huì)調(diào)用clean方法,該方法主要是用來(lái)做對(duì)應(yīng)的資源回收,在堆外內(nèi)存DirectByteBuffer中就是用Cleaner進(jìn)行堆外內(nèi)存的回收,這也是虛引用在java中的典型應(yīng)用。

看完了Reference的實(shí)現(xiàn),再看看幾個(gè)實(shí)現(xiàn)類里,各自有什么不同。

SoftReference

public?class?SoftReference<T>?extends?Reference<T>?{
????
????static?private?long?clock;
????
????private?long?timestamp;
???
????public?SoftReference(T?referent)?{
????????super(referent);
????????this.timestamp?=?clock;
????}
?
????public?SoftReference(T?referent,?ReferenceQueue<??super?T>?q)?{
????????super(referent,?q);
????????this.timestamp?=?clock;
????}

????public?T?get()?{
????????T?o?=?super.get();
????????if?(o?!=?null?&&?this.timestamp?!=?clock)
????????????this.timestamp?=?clock;
????????return?o;
????}

}

軟引用的實(shí)現(xiàn)很簡(jiǎn)單,就多了兩個(gè)字段:clocktimestamp。clock是個(gè)靜態(tài)變量,每次GC時(shí)都會(huì)將該字段設(shè)置成當(dāng)前時(shí)間。timestamp字段則會(huì)在每次調(diào)用get方法時(shí)將其賦值為clock(如果不相等且對(duì)象沒(méi)被回收)。

那這兩個(gè)字段的作用是什么呢?這和軟引用在內(nèi)存不夠的時(shí)候才被回收,又有什么關(guān)系呢?

這些還得看JVM的源碼才行,因?yàn)闆Q定對(duì)象是否需要被回收都是在GC中實(shí)現(xiàn)的。

size_t
ReferenceProcessor::process_discovered_reflist(
??DiscoveredList???????????????refs_lists[],
??ReferencePolicy*?????????????policy,
??bool?????????????????????????clear_referent,
??BoolObjectClosure*???????????is_alive,
??OopClosure*??????????????????keep_alive,
??VoidClosure*?????????????????complete_gc,
??AbstractRefProcTaskExecutor*?task_executor)
{
?...
???//還記得上文提到過(guò)的DiscoveredList嗎?refs_lists就是DiscoveredList。
???//對(duì)于DiscoveredList的處理分為幾個(gè)階段,SoftReference的處理就在第一階段
?...
??????for?(uint?i?=?0;?i?<?_max_num_q;?i++)?{
????????process_phase1(refs_lists[i],?policy,
???????????????????????is_alive,?keep_alive,?complete_gc);
??????}
?...
}

//該階段的主要目的就是當(dāng)內(nèi)存足夠時(shí),將對(duì)應(yīng)的SoftReference從refs_list中移除。
void
ReferenceProcessor::process_phase1(DiscoveredList&????refs_list,
???????????????????????????????????ReferencePolicy*???policy,
???????????????????????????????????BoolObjectClosure*?is_alive,
???????????????????????????????????OopClosure*????????keep_alive,
???????????????????????????????????VoidClosure*???????complete_gc)?{
??
??DiscoveredListIterator?iter(refs_list,?keep_alive,?is_alive);
??//?Decide?which?softly?reachable?refs?should?be?kept?alive.
??while?(iter.has_next())?{
????iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic()?/*?allow_null_referent?*/));
????//判斷引用的對(duì)象是否存活
????bool?referent_is_dead?=?(iter.referent()?!=?NULL)?&&?!iter.is_referent_alive();
????//如果引用的對(duì)象已經(jīng)不存活了,則會(huì)去調(diào)用對(duì)應(yīng)的ReferencePolicy判斷該對(duì)象是不時(shí)要被回收
????if?(referent_is_dead?&&
????????!policy->should_clear_reference(iter.obj(),?_soft_ref_timestamp_clock))?{
??????if?(TraceReferenceGC)?{
????????gclog_or_tty->print_cr("Dropping?reference?("?INTPTR_FORMAT?":?%s"??")?by?policy",
???????????????????????????????(void?*)iter.obj(),?iter.obj()->klass()->internal_name());
??????}
??????//?Remove?Reference?object?from?list
??????iter.remove();
??????//?Make?the?Reference?object?active?again
??????iter.make_active();
??????//?keep?the?referent?around
??????iter.make_referent_alive();
??????iter.move_to_next();
????}?else?{
??????iter.next();
????}
??}
?...
}

refs_lists中存放了本次GC發(fā)現(xiàn)的某種引用類型(虛引用、軟引用、弱引用等),而process_discovered_reflist方法的作用就是將不需要被回收的對(duì)象從refs_lists移除掉,refs_lists最后剩下的元素全是需要被回收的元素,最后會(huì)將其第一個(gè)元素賦值給上文提到過(guò)的Reference.java#pending字段。

ReferencePolicy一共有4種實(shí)現(xiàn):NeverClearPolicy,AlwaysClearPolicy,LRUCurrentHeapPolicy,LRUMaxHeapPolicy。其中NeverClearPolicy永遠(yuǎn)返回false,代表永遠(yuǎn)不回收SoftReference,在JVM中該類沒(méi)有被使用,AlwaysClearPolicy則永遠(yuǎn)返回true,在referenceProcessor.hpp#setup方法中中可以設(shè)置policy為AlwaysClearPolicy,至于什么時(shí)候會(huì)用到AlwaysClearPolicy,大家有興趣可以自行研究。

LRUCurrentHeapPolicy和LRUMaxHeapPolicy的should_clear_reference方法則是完全相同:

bool?LRUMaxHeapPolicy::should_clear_reference(oop?p,
?????????????????????????????????????????????jlong?timestamp_clock)?{
??jlong?interval?=?timestamp_clock?-?java_lang_ref_SoftReference::timestamp(p);
??assert(interval?>=?0,?"Sanity?check");

??//?The?interval?will?be?zero?if?the?ref?was?accessed?since?the?last?scavenge/gc.
??if(interval?<=?_max_interval)?{
????return?false;
??}

??return?true;
}

timestamp_clock就是SoftReference的靜態(tài)字段clock,java_lang_ref_SoftReference::timestamp(p)對(duì)應(yīng)是字段timestamp。如果上次GC后有調(diào)用SoftReference#getinterval值為0,否則為若干次GC之間的時(shí)間差。

_max_interval則代表了一個(gè)臨界值,它的值在LRUCurrentHeapPolicy和LRUMaxHeapPolicy兩種策略中有差異。

void?LRUCurrentHeapPolicy::setup()?{
??_max_interval?=?(Universe::get_heap_free_at_last_gc()?/?M)?*?SoftRefLRUPolicyMSPerMB;
??assert(_max_interval?>=?0,"Sanity?check");
}

void?LRUMaxHeapPolicy::setup()?{
??size_t?max_heap?=?MaxHeapSize;
??max_heap?-=?Universe::get_heap_used_at_last_gc();
??max_heap?/=?M;

??_max_interval?=?max_heap?*?SoftRefLRUPolicyMSPerMB;
??assert(_max_interval?>=?0,"Sanity?check");
}

其中SoftRefLRUPolicyMSPerMB默認(rèn)為1000,前者的計(jì)算方法和上次GC后可用堆大小有關(guān),后者計(jì)算方法和(堆大小-上次gc時(shí)堆使用大小)有關(guān)。

看到這里你就知道SoftReference到底什么時(shí)候被被回收了,它和使用的策略(默認(rèn)應(yīng)該是LRUCurrentHeapPolicy),堆可用大小,該SoftReference上一次調(diào)用get方法的時(shí)間都有關(guān)系。

WeakReference

public?class?WeakReference<T>?extends?Reference<T>?{

????public?WeakReference(T?referent)?{
????????super(referent);
????}

????public?WeakReference(T?referent,?ReferenceQueue<??super?T>?q)?{
????????super(referent,?q);
????}

}

可以看到WeakReference在Java層只是繼承了Reference,沒(méi)有做任何的改動(dòng)。那referent字段是什么時(shí)候被置為null的呢?要搞清楚這個(gè)問(wèn)題我們?cè)倏聪律衔奶岬竭^(guò)的process_discovered_reflist方法:

size_t
ReferenceProcessor::process_discovered_reflist(
??DiscoveredList???????????????refs_lists[],
??ReferencePolicy*?????????????policy,
??bool?????????????????????????clear_referent,
??BoolObjectClosure*???????????is_alive,
??OopClosure*??????????????????keep_alive,
??VoidClosure*?????????????????complete_gc,
??AbstractRefProcTaskExecutor*?task_executor)
{
?...

??//Phase?1:將所有不存活但是還不能被回收的軟引用從refs_lists中移除(只有refs_lists為軟引用的時(shí)候,這里policy才不為null)
??if?(policy?!=?NULL)?{
????if?(mt_processing)?{
??????RefProcPhase1Task?phase1(*this,?refs_lists,?policy,?true?/*marks_oops_alive*/);
??????task_executor->execute(phase1);
????}?else?{
??????for?(uint?i?=?0;?i?<?_max_num_q;?i++)?{
????????process_phase1(refs_lists[i],?policy,
???????????????????????is_alive,?keep_alive,?complete_gc);
??????}
????}
??}?else?{?//?policy?==?NULL
????assert(refs_lists?!=?_discoveredSoftRefs,
???????????"Policy?must?be?specified?for?soft?references.");
??}

??//?Phase?2:
??//?移除所有指向?qū)ο筮€存活的引用
??if?(mt_processing)?{
????RefProcPhase2Task?phase2(*this,?refs_lists,?!discovery_is_atomic()?/*marks_oops_alive*/);
????task_executor->execute(phase2);
??}?else?{
????for?(uint?i?=?0;?i?<?_max_num_q;?i++)?{
??????process_phase2(refs_lists[i],?is_alive,?keep_alive,?complete_gc);
????}
??}

??//?Phase?3:
??//?根據(jù)clear_referent的值決定是否將不存活對(duì)象回收
??if?(mt_processing)?{
????RefProcPhase3Task?phase3(*this,?refs_lists,?clear_referent,?true?/*marks_oops_alive*/);
????task_executor->execute(phase3);
??}?else?{
????for?(uint?i?=?0;?i?<?_max_num_q;?i++)?{
??????process_phase3(refs_lists[i],?clear_referent,
?????????????????????is_alive,?keep_alive,?complete_gc);
????}
??}

??return?total_list_count;
}

void
ReferenceProcessor::process_phase3(DiscoveredList&????refs_list,
???????????????????????????????????bool???????????????clear_referent,
???????????????????????????????????BoolObjectClosure*?is_alive,
???????????????????????????????????OopClosure*????????keep_alive,
???????????????????????????????????VoidClosure*???????complete_gc)?{
??ResourceMark?rm;
??DiscoveredListIterator?iter(refs_list,?keep_alive,?is_alive);
??while?(iter.has_next())?{
????iter.update_discovered();
????iter.load_ptrs(DEBUG_ONLY(false?/*?allow_null_referent?*/));
????if?(clear_referent)?{
??????//?NULL?out?referent?pointer
??????//將Reference的referent字段置為null,之后會(huì)被GC回收
??????iter.clear_referent();
????}?else?{
??????//?keep?the?referent?around
??????//標(biāo)記引用的對(duì)象為存活,該對(duì)象在這次GC將不會(huì)被回收
??????iter.make_referent_alive();
????}
	...
??}
????...
}

不管是弱引用還是其他引用類型,將字段referent置null的操作都發(fā)生在process_phase3中,而具體行為是由clear_referent的值決定的。而clear_referent的值則和引用類型相關(guān)。

ReferenceProcessorStats?ReferenceProcessor::process_discovered_references(
??BoolObjectClosure*???????????is_alive,
??OopClosure*??????????????????keep_alive,
??VoidClosure*?????????????????complete_gc,
??AbstractRefProcTaskExecutor*?task_executor,
??GCTimer*?????????????????????gc_timer)?{
??NOT_PRODUCT(verify_ok_to_handle_reflists());
	...
??//process_discovered_reflist方法的第3個(gè)字段就是clear_referent
??//?Soft?references
??size_t?soft_count?=?0;
??{
????GCTraceTime?tt("SoftReference",?trace_time,?false,?gc_timer);
????soft_count?=
??????process_discovered_reflist(_discoveredSoftRefs,?_current_soft_ref_policy,?true,
?????????????????????????????????is_alive,?keep_alive,?complete_gc,?task_executor);
??}

??update_soft_ref_master_clock();

??//?Weak?references
??size_t?weak_count?=?0;
??{
????GCTraceTime?tt("WeakReference",?trace_time,?false,?gc_timer);
????weak_count?=
??????process_discovered_reflist(_discoveredWeakRefs,?NULL,?true,
?????????????????????????????????is_alive,?keep_alive,?complete_gc,?task_executor);
??}

??//?Final?references
??size_t?final_count?=?0;
??{
????GCTraceTime?tt("FinalReference",?trace_time,?false,?gc_timer);
????final_count?=
??????process_discovered_reflist(_discoveredFinalRefs,?NULL,?false,
?????????????????????????????????is_alive,?keep_alive,?complete_gc,?task_executor);
??}

??//?Phantom?references
??size_t?phantom_count?=?0;
??{
????GCTraceTime?tt("PhantomReference",?trace_time,?false,?gc_timer);
????phantom_count?=
??????process_discovered_reflist(_discoveredPhantomRefs,?NULL,?false,
?????????????????????????????????is_alive,?keep_alive,?complete_gc,?task_executor);
??}
	...
}

可以看到,對(duì)于Soft references和Weak references?clear_referent字段傳入的都是true,這也符合我們的預(yù)期:對(duì)象不可達(dá)后,引用字段就會(huì)被置為null,然后對(duì)象就會(huì)被回收(對(duì)于軟引用來(lái)說(shuō),如果內(nèi)存足夠的話,在Phase 1,相關(guān)的引用就會(huì)從refs_list中被移除,到Phase 3時(shí)refs_list為空集合)。

但對(duì)于Final references和 Phantom references,clear_referent字段傳入的是false,也就意味著被這兩種引用類型引用的對(duì)象,如果沒(méi)有其他額外處理,只要Reference對(duì)象還存活,那引用的對(duì)象是不會(huì)被回收的。Final references和對(duì)象是否重寫(xiě)了finalize方法有關(guān),不在本文分析范圍之內(nèi),我們接下來(lái)看看Phantom references。

PhantomReference

public?class?PhantomReference<T>?extends?Reference<T>?{
?
????public?T?get()?{
????????return?null;
????}
?
????public?PhantomReference(T?referent,?ReferenceQueue<??super?T>?q)?{
????????super(referent,?q);
????}

}

可以看到虛引用的get方法永遠(yuǎn)返回null,我們看個(gè)demo。

public?static?void?demo()?throws?InterruptedException?{
????????Object?obj?=?new?Object();
????????ReferenceQueue<Object>?refQueue?=new?ReferenceQueue<>();
????????PhantomReference<Object>?phanRef?=new?PhantomReference<>(obj,?refQueue);

????????Object?objg?=?phanRef.get();
????????//這里拿到的是null
????????System.out.println(objg);
????????//讓obj變成垃圾
????????obj=null;
????????System.gc();
????????Thread.sleep(3000);
		//gc后會(huì)將phanRef加入到refQueue中
????????Reference<??extends?Object>?phanRefP?=?refQueue.remove();
?????	//這里輸出true
????????System.out.println(phanRefP==phanRef);
????}

從以上代碼中可以看到,虛引用能夠在指向?qū)ο蟛豢蛇_(dá)時(shí)得到一個(gè)'通知'(其實(shí)所有繼承References的類都有這個(gè)功能),需要注意的是GC完成后,phanRef.referent依然指向之前創(chuàng)建Object,也就是說(shuō)Object對(duì)象一直沒(méi)被回收!

而造成這一現(xiàn)象的原因在上一小節(jié)末尾已經(jīng)說(shuō)了:對(duì)于Final references和 Phantom references,clear_referent字段傳入的時(shí)false,也就意味著被這兩種引用類型引用的對(duì)象,如果沒(méi)有其他額外處理,在GC中是不會(huì)被回收的。

對(duì)于虛引用來(lái)說(shuō),從refQueue.remove();得到引用對(duì)象后,可以調(diào)用clear方法強(qiáng)行解除引用和對(duì)象之間的關(guān)系,使得對(duì)象下次可以GC時(shí)可以被回收掉。

End

針對(duì)文章開(kāi)頭提出的幾個(gè)問(wèn)題,看完分析,我們已經(jīng)能給出回答:

1.我們經(jīng)常在網(wǎng)上看到軟引用的介紹是:在內(nèi)存不足的時(shí)候才會(huì)回收,那內(nèi)存不足是怎么定義的?為什么才叫內(nèi)存不足?

軟引用會(huì)在內(nèi)存不足時(shí)被回收,內(nèi)存不足的定義和該引用對(duì)象get的時(shí)間以及當(dāng)前堆可用內(nèi)存大小都有關(guān)系,計(jì)算公式在上文中也已經(jīng)給出。

2.網(wǎng)上對(duì)于虛引用的介紹是:形同虛設(shè),與其他幾種引用都不同,虛引用并不會(huì)決定對(duì)象的生命周期。主要用來(lái)跟蹤對(duì)象被垃圾回收器回收的活動(dòng)。真的是這樣嗎?

嚴(yán)格的說(shuō),虛引用是會(huì)影響對(duì)象生命周期的,如果不做任何處理,只要虛引用不被回收,那其引用的對(duì)象永遠(yuǎn)不會(huì)被回收。所以一般來(lái)說(shuō),從ReferenceQueue中獲得PhantomReference對(duì)象后,如果PhantomReference對(duì)象不會(huì)被回收的話(比如被其他GC ROOT可達(dá)的對(duì)象引用),需要調(diào)用clear方法解除PhantomReference和其引用對(duì)象的引用關(guān)系。

3.虛引用在Jdk中有哪些場(chǎng)景下用到了呢?

DirectByteBuffer中是用虛引用的子類Cleaner.java來(lái)實(shí)現(xiàn)堆外內(nèi)存回收的,后續(xù)會(huì)寫(xiě)篇文章來(lái)說(shuō)說(shuō)堆外內(nèi)存的里里外外。


向AI問(wèn)一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI