您好,登錄后才能下訂單哦!
在C++中實現(xiàn)聚類算法和構(gòu)建聚類樹結(jié)構(gòu)需要一些數(shù)學(xué)和算法知識。這里,我們將簡要介紹K-means聚類算法和基于密度的DBSCAN算法,以及如何構(gòu)建聚類樹結(jié)構(gòu)。
K-means是一種迭代優(yōu)化算法,用于將數(shù)據(jù)集劃分為K個簇。其基本思想是最小化每個簇內(nèi)數(shù)據(jù)點與其質(zhì)心之間的距離之和。以下是K-means算法的C++實現(xiàn):
#include <iostream>
#include <vector>
#include <cmath>
#include <random>
using namespace std;
vector<vector<double>> kMeans(const vector<vector<double>>& data, int k, int maxIter = 100) {
int n = data.size();
vector<vector<double>> centroids(k, vector<double>(data[0].size(), 0));
vector<int> labels(n, -1);
random_device rd;
mt19937 gen(rd());
uniform_int_distribution<> dis(0, k - 1);
for (int iter = 0; iter < maxIter; ++iter) {
vector<vector<double>> newCentroids(k, vector<double>(data[0].size(), 0));
for (int i = 0; i < n; ++i) {
int label = dis(gen);
labels[i] = label;
for (int j = 0; j < data[0].size(); ++j) {
newCentroids[label][j] += data[i][j];
}
}
for (int i = 0; i < k; ++i) {
double sum = 0;
for (int j = 0; j < data[0].size(); ++j) {
sum += newCentroids[i][j];
}
for (int j = 0; j < data[0].size(); ++j) {
newCentroids[i][j] /= sum;
}
}
bool converged = true;
for (int i = 0; i < k; ++i) {
for (int j = 0; j < data[0].size(); ++j) {
if (abs(newCentroids[i][j] - centroids[i][j]) > 1e-6) {
converged = false;
break;
}
}
if (!converged) break;
}
if (converged) break;
centroids = newCentroids;
}
return centroids;
}
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一種基于密度的聚類算法。它可以將具有足夠高密度的區(qū)域劃分為簇,并將稀疏區(qū)域的噪聲點排除在外。以下是DBSCAN算法的C++實現(xiàn):
#include <iostream>
#include <vector>
#include <cmath>
#include <queue>
#include <unordered_set>
using namespace std;
vector<vector<int>> dbscan(const vector<vector<double>>& data, double eps, int minPts) {
int n = data.size();
vector<vector<int>> labels(n, -1);
queue<int> q;
unordered_set<int> visited;
for (int i = 0; i < n; ++i) {
if (visited.find(i) != visited.end()) continue;
q.push(i);
visited.insert(i);
int numNeighbors = 0;
vector<int> neighbors(minPts);
while (!q.empty()) {
int point = q.front();
q.pop();
for (int j = 0; j < data[0].size(); ++j) {
int neighbor = -1;
for (int k = 0; k < minPts; ++k) {
if (abs(data[point][j] - data[neighbors[k]][j]) < eps) {
neighbor = neighbors[k];
break;
}
}
if (neighbor == -1) {
neighbors[numNeighbors++] = point;
q.push(point);
visited.insert(point);
} else if (labels[neighbor] == -1) {
labels[neighbor] = labels[point];
q.push(neighbor);
visited.insert(neighbor);
}
}
}
}
return labels;
}
聚類樹(Cluster Tree)是一種用于表示數(shù)據(jù)集層次聚類結(jié)構(gòu)的樹形數(shù)據(jù)結(jié)構(gòu)。這里我們使用著名的Agglomerative Clustering算法來構(gòu)建聚類樹。以下是Agglomerative Clustering算法的C++實現(xiàn):
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
using namespace std;
vector<int> agglomerativeClustering(const vector<vector<double>>& data, int minPts, double eps) {
int n = data.size();
vector<int> labels(n, -1);
vector<vector<int>> clusters(n);
for (int i = 0; i < n; ++i) {
clusters[i].push_back(i);
}
while (clusters.size() > 1) {
int minDist = INT_MAX;
int minIndex = -1;
for (size_t i = 0; i < clusters.size() - 1; ++i) {
for (size_t j = i + 1; j < clusters.size(); ++j) {
double dist = calculateDistance(clusters[i], clusters[j], data);
if (dist < minDist) {
minDist = dist;
minIndex = i;
}
}
}
int mergedCluster = clusters[minIndex];
clusters.erase(clusters.begin() + minIndex);
clusters.push_back(mergeClusters(mergedCluster, clusters[minIndex], data, eps));
}
return labels;
}
double calculateDistance(const vector<int>& cluster1, const vector<int>& cluster2, const vector<vector<double>>& data) {
double distance = 0;
for (int point : cluster1) {
for (int point2 : cluster2) {
distance += pow(data[point][0] - data[point2][0], 2) + pow(data[point][1] - data[point2][1], 2);
}
}
return sqrt(distance);
}
vector<int> mergeClusters(const vector<int>& cluster1, const vector<int>& cluster2, const vector<vector<double>>& data, double eps) {
vector<int> mergedCluster;
for (int point : cluster1) {
mergedCluster.push_back(point);
}
for (int point : cluster2) {
mergedCluster.push_back(point);
}
vector<vector<int>> distanceMatrix(mergedCluster.size(), vector<int>(mergedCluster.size(), -1));
for (size_t i = 0; i < mergedCluster.size(); ++i) {
for (size_t j = i + 1; j < mergedCluster.size(); ++j) {
distanceMatrix[i][j] = calculateDistance({mergedCluster[i]}, {mergedCluster[j]}, data);
distanceMatrix[j][i] = distanceMatrix[i][j];
}
}
int maxDistIndex = 0;
for (size_t i = 1; i < distanceMatrix.size(); ++i) {
if (distanceMatrix[i][maxDistIndex] > distanceMatrix[maxDistIndex][i]) {
maxDistIndex = i;
}
}
for (size_t i = maxDistIndex + 1; i < distanceMatrix.size(); ++i) {
double dist = distanceMatrix[maxDistIndex][i];
for (size_t j = i + 1; j < distanceMatrix.size(); ++j) {
if (distanceMatrix[i][j] > dist) {
dist = distanceMatrix[i][j];
}
}
if (dist < eps) {
distanceMatrix[maxDistIndex][i] = 0;
distanceMatrix[i][maxDistIndex] = 0;
for (size_t k = 0; k < mergedCluster.size(); ++k) {
distanceMatrix[maxDistIndex][k] = 0;
distanceMatrix[k][maxDistIndex] = 0;
}
}
}
return mergedCluster;
}
這些代碼片段展示了如何在C++中實現(xiàn)K-means聚類算法、DBSCAN聚類算法和Agglomerative Clustering算法,以及如何構(gòu)建聚類樹結(jié)構(gòu)。你可以根據(jù)自己的需求對這些代碼進行修改和優(yōu)化。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。