您好,登錄后才能下訂單哦!
在Java中,異步加載緩存數(shù)據(jù)并實(shí)現(xiàn)線程非阻塞優(yōu)化可以通過(guò)多種方式來(lái)實(shí)現(xiàn)。以下是一些常見(jiàn)的方法:
CompletableFuture
CompletableFuture
是Java 8引入的一個(gè)強(qiáng)大的異步編程工具,可以用來(lái)處理異步任務(wù)。
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
public class AsyncCacheLoader {
private final Cache<String, String> cache = new ConcurrentHashMap<>();
public CompletableFuture<String> loadAsync(String key) {
return CompletableFuture.supplyAsync(() -> {
// 模擬從數(shù)據(jù)庫(kù)或其他數(shù)據(jù)源加載數(shù)據(jù)
return fetchDataFromDataSource(key);
});
}
public String get(String key) {
return cache.computeIfAbsent(key, this::loadAsync)
.thenApply(CompletableFuture::join)
.orTimeout(10, TimeUnit.SECONDS)
.exceptionally(ex -> {
System.err.println("Error loading data for key: " + key);
return null;
});
}
private String fetchDataFromDataSource(String key) {
// 模擬從數(shù)據(jù)庫(kù)或其他數(shù)據(jù)源加載數(shù)據(jù)
try {
Thread.sleep(1000); // 模擬耗時(shí)操作
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
return "Data for key: " + key;
}
public static void main(String[] args) {
AsyncCacheLoader cacheLoader = new AsyncCacheLoader();
cacheLoader.get("key1").thenAccept(System.out::println);
}
}
ExecutorService
ExecutorService
是一個(gè)線程池,可以用來(lái)執(zhí)行異步任務(wù)。
import java.util.concurrent.*;
public class AsyncCacheLoader {
private final Cache<String, String> cache = new ConcurrentHashMap<>();
private final ExecutorService executorService = Executors.newFixedThreadPool(10);
public Future<String> loadAsync(String key) {
return executorService.submit(() -> {
// 模擬從數(shù)據(jù)庫(kù)或其他數(shù)據(jù)源加載數(shù)據(jù)
return fetchDataFromDataSource(key);
});
}
public String get(String key) {
return cache.computeIfAbsent(key, this::loadAsync)
.get();
}
private String fetchDataFromDataSource(String key) {
// 模擬從數(shù)據(jù)庫(kù)或其他數(shù)據(jù)源加載數(shù)據(jù)
try {
Thread.sleep(1000); // 模擬耗時(shí)操作
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
return "Data for key: " + key;
}
public static void main(String[] args) {
AsyncCacheLoader cacheLoader = new AsyncCacheLoader();
try {
System.out.println(cacheLoader.get("key1"));
} catch (InterruptedException | ExecutionException e) {
e.printStackTrace();
} finally {
cacheLoader.executorService.shutdown();
}
}
}
ConcurrentHashMap
的computeIfAbsent
方法ConcurrentHashMap
提供了computeIfAbsent
方法,可以在緩存未命中時(shí)異步加載數(shù)據(jù)。
import java.util.concurrent.*;
public class AsyncCacheLoader {
private final Cache<String, String> cache = new ConcurrentHashMap<>();
private final ExecutorService executorService = Executors.newFixedThreadPool(10);
public String get(String key) {
return cache.computeIfAbsent(key, key -> {
// 模擬從數(shù)據(jù)庫(kù)或其他數(shù)據(jù)源加載數(shù)據(jù)
CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> {
return fetchDataFromDataSource(key);
}, executorService);
future.thenApply(data -> {
cache.put(key, data);
return data;
});
return future;
});
}
private String fetchDataFromDataSource(String key) {
// 模擬從數(shù)據(jù)庫(kù)或其他數(shù)據(jù)源加載數(shù)據(jù)
try {
Thread.sleep(1000); // 模擬耗時(shí)操作
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
return "Data for key: " + key;
}
public static void main(String[] args) {
AsyncCacheLoader cacheLoader = new AsyncCacheLoader();
System.out.println(cacheLoader.get("key1"));
}
}
ScheduledExecutorService
進(jìn)行定時(shí)刷新如果需要定期刷新緩存數(shù)據(jù),可以使用ScheduledExecutorService
。
import java.util.concurrent.*;
public class AsyncCacheLoader {
private final Cache<String, String> cache = new ConcurrentHashMap<>();
private final ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(1);
public AsyncCacheLoader() {
scheduler.scheduleAtFixedRate(this::refreshCache, 0, 5, TimeUnit.SECONDS);
}
public String get(String key) {
return cache.get(key);
}
private void refreshCache() {
// 模擬從數(shù)據(jù)庫(kù)或其他數(shù)據(jù)源加載數(shù)據(jù)
for (String key : cache.keySet()) {
CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> {
return fetchDataFromDataSource(key);
}, executorService);
future.thenApply(data -> {
cache.put(key, data);
return data;
});
}
}
private String fetchDataFromDataSource(String key) {
// 模擬從數(shù)據(jù)庫(kù)或其他數(shù)據(jù)源加載數(shù)據(jù)
try {
Thread.sleep(1000); // 模擬耗時(shí)操作
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
return "Data for key: " + key;
}
public static void main(String[] args) {
AsyncCacheLoader cacheLoader = new AsyncCacheLoader();
System.out.println(cacheLoader.get("key1"));
}
}
通過(guò)這些方法,可以實(shí)現(xiàn)異步加載緩存數(shù)據(jù)并確保線程非阻塞,從而提高系統(tǒng)的性能和響應(yīng)速度。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。