您好,登錄后才能下訂單哦!
本文在介紹關(guān)于C++實現(xiàn)稀疏矩陣的壓縮存儲、轉(zhuǎn)置、快速轉(zhuǎn)置的基礎(chǔ)上,重點(diǎn)探討了其具體步驟分享了代碼,本文內(nèi)容緊湊,希望大家可以有所收獲。
/*稀疏矩陣的壓縮存儲、轉(zhuǎn)置、快速轉(zhuǎn)置*/ #include <iostream> using namespace std; #include <vector> //三元組 template<class T> struct Triple { size_t _row; size_t _col; T _value; Triple(size_t row = 0, size_t col = 0, const T& value = T()) :_row(row) ,_col(col) ,_value(value) {} }; template<class T> class SparseMatrix { public: SparseMatrix(T* a = NULL, size_t M = 0, size_t N = 0, const T& invalid = T()) :_rowSize(M) ,_colSize(N) ,_invalid(invalid) { for (size_t i = 0; i < M; ++i) { for (size_t j = 0; j < N; ++j) { if (a[i*N+j] != _invalid) { Triple<T> t; t._row = i; t._col = j; t._value = a[i*N+j]; _a.push_back(t); } } } } void Display() { size_t index = 0; for (size_t i = 0; i < _rowSize; ++i) { for (size_t j = 0; j < _colSize; ++j) { if (index < _a.size() && (_a[index]._row == i) && (_a[index]._col == j)) { cout<<_a[index++]._value<<" "; } else { cout<<_invalid<<" "; } } cout<<endl; } } //矩陣轉(zhuǎn)置 時間復(fù)雜度為 O(有效數(shù)據(jù)的個數(shù)*原矩陣的列數(shù)) SparseMatrix<T> Transport() { SparseMatrix<T> sm; sm._colSize = _rowSize; sm._rowSize = _colSize; sm._invalid = _invalid; for (size_t i = 0; i < _colSize; ++i) { size_t index = 0; while (index < _a.size()) { if (_a[index]._col == i) { Triple<T> t; t._row = _a[index]._col; t._col = _a[index]._row; t._value = _a[index]._value; sm._a.push_back(t); } ++index; } } return sm; } //快速轉(zhuǎn)置 時間復(fù)雜度為O(有效數(shù)據(jù)的個數(shù)+原矩陣的列數(shù)) SparseMatrix<T> FastTransport() { SparseMatrix<T> sm; sm._rowSize = _colSize; sm._colSize = _rowSize; sm._invalid = _invalid; int* RowCounts = new int[_colSize]; int* RowStart = new int [_colSize]; memset(RowCounts, 0, sizeof(int)*_colSize); memset(RowStart, 0, sizeof(int)*_colSize); size_t index = 0; while (index < _a.size()) { ++RowCounts[_a[index]._col]; ++index; } for (size_t i = 1; i < _colSize; ++i) { RowStart[i] = RowStart[i-1] + RowCounts[i-1]; } index = 0; sm._a.resize(_a.size()); while (index < sm._a.size()) { Triple<T> t; t._row = _a[index]._col; t._col = _a[index]._row; t._value = _a[index]._value; sm._a[RowStart[_a[index]._col]] = t; ++RowStart[_a[index]._col]; ++index; } delete[] RowCounts; delete[] RowStart; return sm; } protected: vector<Triple<T>> _a; size_t _rowSize; size_t _colSize; T _invalid; }; void Test() { int array [6][5] = { {1, 0, 3, 0, 5}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {2, 0, 4, 0, 6}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0} }; SparseMatrix<int> sm1((int*)array, 6, 5, 0); sm1.Display(); cout<<endl; //SprseMatrix<int> sm2 = sm1.Transport(); SparseMatrix<int> sm2 = sm1.FastTransport(); sm2.Display(); } int main() { Test(); return 0; }
看完上訴內(nèi)容,你們掌握C++實現(xiàn)稀疏矩陣的壓縮存儲、轉(zhuǎn)置、快速轉(zhuǎn)置的方法了嗎?如果想了解更多相關(guān)內(nèi)容,歡迎關(guān)注億速云行業(yè)資訊頻道!
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。