您好,登錄后才能下訂單哦!
本篇內(nèi)容介紹了“怎么使用python繪制發(fā)散型柱狀圖、誤差陰影時間序列圖、雙坐標(biāo)系時間序列圖和繪制金字塔圖”的有關(guān)知識,在實際案例的操作過程中,不少人都會遇到這樣的困境,接下來就讓小編帶領(lǐng)大家學(xué)習(xí)一下如何處理這些情況吧!希望大家仔細(xì)閱讀,能夠?qū)W有所成!
python繪制發(fā)散型柱狀圖,展示單個指標(biāo)的變化的順序和數(shù)量,在柱子上添加了數(shù)值文本。
實現(xiàn)代碼:
import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings(action='once') df = pd.read_csv("C:\工作\學(xué)習(xí)\數(shù)據(jù)雜壇/datasets/mtcars.csv") x = df.loc[:, ['mpg']] df['mpg_z'] = (x - x.mean()) / x.std() df['colors'] = ['red' if x < 0 else 'green' for x in df['mpg_z']] df.sort_values('mpg_z', inplace=True) df.reset_index(inplace=True) # Draw plot plt.figure(figsize=(10, 6), dpi=80) plt.hlines(y=df.index, xmin=0, xmax=df.mpg_z, color=df.colors, alpha=0.8, linewidth=5) for x, y, tex in zip(df.mpg_z, df.index, df.mpg_z): t = plt.text(x, y, round(tex, 2), horizontalalignment='right' if x < 0 else 'left', verticalalignment='center', fontdict={'color':'black' if x < 0 else 'black', 'size':10}) # Decorations plt.gca().set(ylabel='$Model', xlabel='$Mileage') plt.yticks(df.index, df.cars, fontsize=12) plt.xticks(fontsize=12) plt.title('Diverging Bars of Car Mileage') plt.grid(linestyle='--', alpha=0.5) plt.show()
實現(xiàn)效果:
實現(xiàn)功能:
python繪制帶誤差陰影的時間序列圖。
實現(xiàn)代碼:
from scipy.stats import sem import pandas as pd import matplotlib.pyplot as plt # Import Data df_raw = pd.read_csv('F:\數(shù)據(jù)雜壇\datasets\orders_45d.csv', parse_dates=['purchase_time', 'purchase_date']) # Prepare Data: Daily Mean and SE Bands df_mean = df_raw.groupby('purchase_date').quantity.mean() df_se = df_raw.groupby('purchase_date').quantity.apply(sem).mul(1.96) # Plot plt.figure(figsize=(10, 6), dpi=80) plt.ylabel("Daily Orders", fontsize=12) x = [d.date().strftime('%Y-%m-%d') for d in df_mean.index] plt.plot(x, df_mean, color="#c72e29", lw=2) plt.fill_between(x, df_mean - df_se, df_mean + df_se, color="#f8f2e4") # Decorations # Lighten borders plt.gca().spines["top"].set_alpha(0) plt.gca().spines["bottom"].set_alpha(1) plt.gca().spines["right"].set_alpha(0) plt.gca().spines["left"].set_alpha(1) plt.xticks(x[::6], [str(d) for d in x[::6]], fontsize=12) plt.title("Daily Order Quantity of Brazilian Retail with Error Bands (95% confidence)",fontsize=14) # Axis limits s, e = plt.gca().get_xlim() plt.xlim(s, e - 2) plt.ylim(4, 10) # Draw Horizontal Tick lines for y in range(5, 10, 1): plt.hlines(y, xmin=s, xmax=e, colors='black', alpha=0.5, linestyles="--", lw=0.5) plt.show()
實現(xiàn)效果:
實現(xiàn)功能:
python繪制雙坐標(biāo)系(雙變量)時間序列圖。
實現(xiàn)代碼:
import pandas as pd import numpy as np import matplotlib.pyplot as plt # Import Data df = pd.read_csv("F:\數(shù)據(jù)雜壇\datasets\economics.csv") x = df['date'] y1 = df['psavert'] y2 = df['unemploy'] # Plot Line1 (Left Y Axis) fig, ax1 = plt.subplots(1, 1, figsize=(12, 6), dpi=100) ax1.plot(x, y1, color='tab:red') # Plot Line2 (Right Y Axis) ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis ax2.plot(x, y2, color='tab:blue') # Decorations # ax1 (left Y axis) ax1.set_xlabel('Year', fontsize=18) ax1.tick_params(axis='x', rotation=70, labelsize=12) ax1.set_ylabel('Personal Savings Rate', color='#dc2624', fontsize=16) ax1.tick_params(axis='y', rotation=0, labelcolor='#dc2624') ax1.grid(alpha=.4) # ax2 (right Y axis) ax2.set_ylabel("Unemployed (1000's)", color='#01a2d9', fontsize=16) ax2.tick_params(axis='y', labelcolor='#01a2d9') ax2.set_xticks(np.arange(0, len(x), 60)) ax2.set_xticklabels(x [::60], rotation=90, fontdict={'fontsize': 10}) ax2.set_title( "Personal Savings Rate vs Unemployed: Plotting in Secondary Y Axis", fontsize=18) fig.tight_layout() plt.show()
實現(xiàn)效果:
實現(xiàn)功能:
python繪制金字塔圖,一種排過序的分組水平柱狀圖barplot,可很好展示不同分組之間的差異,可可視化逐級過濾或者漏斗的每個階段。
實現(xiàn)代碼:
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # Read data df = pd.read_csv("D:\數(shù)據(jù)雜壇\datasets\email_campaign_funnel.csv") # Draw Plot plt.figure() group_col = 'Gender' order_of_bars = df.Stage.unique()[::-1] colors = [ plt.cm.Set1(i / float(len(df[group_col].unique()) - 1)) for i in range(len(df[group_col].unique())) ] for c, group in zip(colors, df[group_col].unique()): sns.barplot(x='Users', y='Stage', data=df.loc[df[group_col] == group, :], order=order_of_bars, color=c, label=group) # Decorations plt.xlabel("$Users$") plt.ylabel("Stage of Purchase") plt.yticks(fontsize=12) plt.title("Population Pyramid of the Marketing Funnel", fontsize=18) plt.legend() plt.savefig('C:\工作\學(xué)習(xí)\數(shù)據(jù)雜壇\素材\\0815\金字塔', dpi=300, bbox_inches = 'tight') plt.show()
實現(xiàn)效果:
“怎么使用python繪制發(fā)散型柱狀圖、誤差陰影時間序列圖、雙坐標(biāo)系時間序列圖和繪制金字塔圖”的內(nèi)容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業(yè)相關(guān)的知識可以關(guān)注億速云網(wǎng)站,小編將為大家輸出更多高質(zhì)量的實用文章!
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。