您好,登錄后才能下訂單哦!
這篇文章主要介紹“Redis+Caffeine如何實現(xiàn)分布式二級緩存組件”的相關(guān)知識,小編通過實際案例向大家展示操作過程,操作方法簡單快捷,實用性強(qiáng),希望這篇“Redis+Caffeine如何實現(xiàn)分布式二級緩存組件”文章能幫助大家解決問題。
緩存就是將數(shù)據(jù)從讀取較慢的介質(zhì)上讀取出來放到讀取較快的介質(zhì)上,如磁盤-->內(nèi)存。
平時我們會將數(shù)據(jù)存儲到磁盤上,如:數(shù)據(jù)庫。如果每次都從數(shù)據(jù)庫里去讀取,會因為磁盤本身的IO影響讀取速度,所以就有了像redis這種的內(nèi)存緩存。可以將數(shù)據(jù)讀取出來放到內(nèi)存里,這樣當(dāng)需要獲取數(shù)據(jù)時,就能夠直接從內(nèi)存中拿到數(shù)據(jù)返回,能夠很大程度的提高速度。
但是一般redis是單獨部署成集群,所以會有網(wǎng)絡(luò)IO上的消耗,雖然與redis集群的鏈接已經(jīng)有連接池這種工具,但是數(shù)據(jù)傳輸上也還是會有一定消耗。所以就有了進(jìn)程內(nèi)緩存,如:caffeine。當(dāng)應(yīng)用內(nèi)緩存有符合條件的數(shù)據(jù)時,就可以直接使用,而不用通過網(wǎng)絡(luò)到redis中去獲取,這樣就形成了兩級緩存。應(yīng)用內(nèi)緩存叫做一級緩存,遠(yuǎn)程緩存(如redis)叫做二級緩存。
系統(tǒng)是否需要緩存CPU占用:如果你有某些應(yīng)用需要消耗大量的cpu去計算獲得結(jié)果。
數(shù)據(jù)庫IO占用:如果你發(fā)現(xiàn)你的數(shù)據(jù)庫連接池比較空閑,那么不應(yīng)該用緩存。但是如果數(shù)據(jù)庫連接池比較繁忙,甚至經(jīng)常報出連接不夠的報警,那么是時候應(yīng)該考慮緩存了。
Redis用來存儲熱點數(shù)據(jù),Redis中沒有的數(shù)據(jù)則直接去數(shù)據(jù)庫訪問。
已經(jīng)有Redis了,干嘛還需要了解Guava,Caffeine這些進(jìn)程緩存呢:
Redis如果不可用,這個時候我們只能訪問數(shù)據(jù)庫,很容易造成雪崩,但一般不會出現(xiàn)這種情況。
訪問Redis會有一定的網(wǎng)絡(luò)I/O以及序列化反序列化開銷,雖然性能很高但是其終究沒有本地方法快,可以將最熱的數(shù)據(jù)存放在本地,以便進(jìn)一步加快訪問速度。這個思路并不是我們做互聯(lián)網(wǎng)架構(gòu)獨有的,在計算機(jī)系統(tǒng)中使用L1,L2,L3多級緩存,用來減少對內(nèi)存的直接訪問,從而加快訪問速度。
所以如果僅僅是使用Redis,能滿足我們大部分需求,但是當(dāng)需要追求更高的性能以及更高的可用性的時候,那就不得不了解多級緩存。
二級緩存操作過程數(shù)據(jù)讀流程描述
redis 與本地緩存都查詢不到值的時候,會觸發(fā)更新過程,整個過程是加鎖的緩存失效流程描述
redis更新與刪除緩存key都會觸發(fā),清除redis緩存后
組件是基于Spring Cache框架上改造的,在項目中使用分布式緩存,僅僅需要在緩存注解上增加:cacheManager ="L2_CacheManager",或者 cacheManager = CacheRedisCaffeineAutoConfiguration.分布式二級緩存
//這個方法會使用分布式二級緩存來提供查詢 @Cacheable(cacheNames = CacheNames.CACHE_12HOUR, cacheManager = "L2_CacheManager") public Config getAllValidateConfig() { }
如果你想既使用分布式緩存,又想用分布式二級緩存組件,那你需要向Spring注入一個 @Primary 的 CacheManager bean
@Primary @Bean("deaultCacheManager") public RedisCacheManager cacheManager(RedisConnectionFactory factory) { // 生成一個默認(rèn)配置,通過config對象即可對緩存進(jìn)行自定義配置 RedisCacheConfiguration config = RedisCacheConfiguration.defaultCacheConfig(); // 設(shè)置緩存的默認(rèn)過期時間,也是使用Duration設(shè)置 config = config.entryTtl(Duration.ofMinutes(2)).disableCachingNullValues(); // 設(shè)置一個初始化的緩存空間set集合 Set<String> cacheNames = new HashSet<>(); cacheNames.add(CacheNames.CACHE_15MINS); cacheNames.add(CacheNames.CACHE_30MINS); // 對每個緩存空間應(yīng)用不同的配置 Map<String, RedisCacheConfiguration> configMap = new HashMap<>(); configMap.put(CacheNames.CACHE_15MINS, config.entryTtl(Duration.ofMinutes(15))); configMap.put(CacheNames.CACHE_30MINS, config.entryTtl(Duration.ofMinutes(30))); // 使用自定義的緩存配置初始化一個cacheManager RedisCacheManager cacheManager = RedisCacheManager.builder(factory) .initialCacheNames(cacheNames) // 注意這兩句的調(diào)用順序,一定要先調(diào)用該方法設(shè)置初始化的緩存名,再初始化相關(guān)的配置 .withInitialCacheConfigurations(configMap) .build(); return cacheManager; }
然后:
//這個方法會使用分布式二級緩存 @Cacheable(cacheNames = CacheNames.CACHE_12HOUR, cacheManager = "L2_CacheManager") public Config getAllValidateConfig() { } //這個方法會使用分布式緩存 @Cacheable(cacheNames = CacheNames.CACHE_12HOUR) public Config getAllValidateConfig2() { }
核心其實就是實現(xiàn) org.springframework.cache.CacheManager接口與繼承org.springframework.cache.support.AbstractValueAdaptingCache,在Spring緩存框架下實現(xiàn)緩存的讀與寫。
RedisCaffeineCacheManager實現(xiàn)CacheManager 接口
RedisCaffeineCacheManager.class 主要來管理緩存實例,根據(jù)不同的 CacheNames 生成對應(yīng)的緩存管理bean,然后放入一個map中。
package com.axin.idea.rediscaffeinecachestarter.support; import com.axin.idea.rediscaffeinecachestarter.CacheRedisCaffeineProperties; import com.github.benmanes.caffeine.cache.Caffeine; import com.github.benmanes.caffeine.cache.stats.CacheStats; import lombok.extern.slf4j.Slf4j; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.cache.Cache; import org.springframework.cache.CacheManager; import org.springframework.data.redis.core.RedisTemplate; import org.springframework.util.CollectionUtils; import java.util.*; import java.util.concurrent.ConcurrentHashMap; import java.util.concurrent.ConcurrentMap; import java.util.concurrent.TimeUnit; @Slf4j public class RedisCaffeineCacheManager implements CacheManager { private final Logger logger = LoggerFactory.getLogger(RedisCaffeineCacheManager.class); private static ConcurrentMap<String, Cache> cacheMap = new ConcurrentHashMap<String, Cache>(); private CacheRedisCaffeineProperties cacheRedisCaffeineProperties; private RedisTemplate<Object, Object> stringKeyRedisTemplate; private boolean dynamic = true; private Set<String> cacheNames; { cacheNames = new HashSet<>(); cacheNames.add(CacheNames.CACHE_15MINS); cacheNames.add(CacheNames.CACHE_30MINS); cacheNames.add(CacheNames.CACHE_60MINS); cacheNames.add(CacheNames.CACHE_180MINS); cacheNames.add(CacheNames.CACHE_12HOUR); } public RedisCaffeineCacheManager(CacheRedisCaffeineProperties cacheRedisCaffeineProperties, RedisTemplate<Object, Object> stringKeyRedisTemplate) { super(); this.cacheRedisCaffeineProperties = cacheRedisCaffeineProperties; this.stringKeyRedisTemplate = stringKeyRedisTemplate; this.dynamic = cacheRedisCaffeineProperties.isDynamic(); } //——————————————————————— 進(jìn)行緩存工具 —————————————————————— /** * 清除所有進(jìn)程緩存 */ public void clearAllCache() { stringKeyRedisTemplate.convertAndSend(cacheRedisCaffeineProperties.getRedis().getTopic(), new CacheMessage(null, null)); } /** * 返回所有進(jìn)程緩存(二級緩存)的統(tǒng)計信息 * result:{"緩存名稱":統(tǒng)計信息} * @return */ public static Map<String, CacheStats> getCacheStats() { if (CollectionUtils.isEmpty(cacheMap)) { return null; } Map<String, CacheStats> result = new LinkedHashMap<>(); for (Cache cache : cacheMap.values()) { RedisCaffeineCache caffeineCache = (RedisCaffeineCache) cache; result.put(caffeineCache.getName(), caffeineCache.getCaffeineCache().stats()); } return result; } //—————————————————————————— core ————————————————————————— @Override public Cache getCache(String name) { Cache cache = cacheMap.get(name); if(cache != null) { return cache; } if(!dynamic && !cacheNames.contains(name)) { return null; } cache = new RedisCaffeineCache(name, stringKeyRedisTemplate, caffeineCache(name), cacheRedisCaffeineProperties); Cache oldCache = cacheMap.putIfAbsent(name, cache); logger.debug("create cache instance, the cache name is : {}", name); return oldCache == null ? cache : oldCache; } @Override public Collection<String> getCacheNames() { return this.cacheNames; } public void clearLocal(String cacheName, Object key) { //cacheName為null 清除所有進(jìn)程緩存 if (cacheName == null) { log.info("清除所有本地緩存"); cacheMap = new ConcurrentHashMap<>(); return; } Cache cache = cacheMap.get(cacheName); if(cache == null) { return; } RedisCaffeineCache redisCaffeineCache = (RedisCaffeineCache) cache; redisCaffeineCache.clearLocal(key); } /** * 實例化本地一級緩存 * @param name * @return */ private com.github.benmanes.caffeine.cache.Cache<Object, Object> caffeineCache(String name) { Caffeine<Object, Object> cacheBuilder = Caffeine.newBuilder(); CacheRedisCaffeineProperties.CacheDefault cacheConfig; switch (name) { case CacheNames.CACHE_15MINS: cacheConfig = cacheRedisCaffeineProperties.getCache15m(); break; case CacheNames.CACHE_30MINS: cacheConfig = cacheRedisCaffeineProperties.getCache30m(); break; case CacheNames.CACHE_60MINS: cacheConfig = cacheRedisCaffeineProperties.getCache60m(); break; case CacheNames.CACHE_180MINS: cacheConfig = cacheRedisCaffeineProperties.getCache180m(); break; case CacheNames.CACHE_12HOUR: cacheConfig = cacheRedisCaffeineProperties.getCache12h(); break; default: cacheConfig = cacheRedisCaffeineProperties.getCacheDefault(); } long expireAfterAccess = cacheConfig.getExpireAfterAccess(); long expireAfterWrite = cacheConfig.getExpireAfterWrite(); int initialCapacity = cacheConfig.getInitialCapacity(); long maximumSize = cacheConfig.getMaximumSize(); long refreshAfterWrite = cacheConfig.getRefreshAfterWrite(); log.debug("本地緩存初始化:"); if (expireAfterAccess > 0) { log.debug("設(shè)置本地緩存訪問后過期時間,{}秒", expireAfterAccess); cacheBuilder.expireAfterAccess(expireAfterAccess, TimeUnit.SECONDS); } if (expireAfterWrite > 0) { log.debug("設(shè)置本地緩存寫入后過期時間,{}秒", expireAfterWrite); cacheBuilder.expireAfterWrite(expireAfterWrite, TimeUnit.SECONDS); } if (initialCapacity > 0) { log.debug("設(shè)置緩存初始化大小{}", initialCapacity); cacheBuilder.initialCapacity(initialCapacity); } if (maximumSize > 0) { log.debug("設(shè)置本地緩存最大值{}", maximumSize); cacheBuilder.maximumSize(maximumSize); } if (refreshAfterWrite > 0) { cacheBuilder.refreshAfterWrite(refreshAfterWrite, TimeUnit.SECONDS); } cacheBuilder.recordStats(); return cacheBuilder.build(); } }
RedisCaffeineCache 繼承 AbstractValueAdaptingCache
核心是get方法與put方法。
package com.axin.idea.rediscaffeinecachestarter.support; import com.axin.idea.rediscaffeinecachestarter.CacheRedisCaffeineProperties; import com.github.benmanes.caffeine.cache.Cache; import lombok.Getter; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.cache.support.AbstractValueAdaptingCache; import org.springframework.data.redis.core.RedisTemplate; import org.springframework.util.StringUtils; import java.time.Duration; import java.util.HashMap; import java.util.Map; import java.util.Set; import java.util.concurrent.Callable; import java.util.concurrent.ConcurrentHashMap; import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.ReentrantLock; public class RedisCaffeineCache extends AbstractValueAdaptingCache { private final Logger logger = LoggerFactory.getLogger(RedisCaffeineCache.class); private String name; private RedisTemplate<Object, Object> redisTemplate; @Getter private Cache<Object, Object> caffeineCache; private String cachePrefix; /** * 默認(rèn)key超時時間 3600s */ private long defaultExpiration = 3600; private Map<String, Long> defaultExpires = new HashMap<>(); { defaultExpires.put(CacheNames.CACHE_15MINS, TimeUnit.MINUTES.toSeconds(15)); defaultExpires.put(CacheNames.CACHE_30MINS, TimeUnit.MINUTES.toSeconds(30)); defaultExpires.put(CacheNames.CACHE_60MINS, TimeUnit.MINUTES.toSeconds(60)); defaultExpires.put(CacheNames.CACHE_180MINS, TimeUnit.MINUTES.toSeconds(180)); defaultExpires.put(CacheNames.CACHE_12HOUR, TimeUnit.HOURS.toSeconds(12)); } private String topic; private Map<String, ReentrantLock> keyLockMap = new ConcurrentHashMap(); protected RedisCaffeineCache(boolean allowNullValues) { super(allowNullValues); } public RedisCaffeineCache(String name, RedisTemplate<Object, Object> redisTemplate, Cache<Object, Object> caffeineCache, CacheRedisCaffeineProperties cacheRedisCaffeineProperties) { super(cacheRedisCaffeineProperties.isCacheNullValues()); this.name = name; this.redisTemplate = redisTemplate; this.caffeineCache = caffeineCache; this.cachePrefix = cacheRedisCaffeineProperties.getCachePrefix(); this.defaultExpiration = cacheRedisCaffeineProperties.getRedis().getDefaultExpiration(); this.topic = cacheRedisCaffeineProperties.getRedis().getTopic(); defaultExpires.putAll(cacheRedisCaffeineProperties.getRedis().getExpires()); } @Override public String getName() { return this.name; } @Override public Object getNativeCache() { return this; } @Override public <T> T get(Object key, Callable<T> valueLoader) { Object value = lookup(key); if (value != null) { return (T) value; } //key在redis和緩存中均不存在 ReentrantLock lock = keyLockMap.get(key.toString()); if (lock == null) { logger.debug("create lock for key : {}", key); keyLockMap.putIfAbsent(key.toString(), new ReentrantLock()); lock = keyLockMap.get(key.toString()); } try { lock.lock(); value = lookup(key); if (value != null) { return (T) value; } //執(zhí)行原方法獲得value value = valueLoader.call(); Object storeValue = toStoreValue(value); put(key, storeValue); return (T) value; } catch (Exception e) { throw new ValueRetrievalException(key, valueLoader, e.getCause()); } finally { lock.unlock(); } } @Override public void put(Object key, Object value) { if (!super.isAllowNullValues() && value == null) { this.evict(key); return; } long expire = getExpire(); logger.debug("put:{},expire:{}", getKey(key), expire); redisTemplate.opsForValue().set(getKey(key), toStoreValue(value), expire, TimeUnit.SECONDS); //緩存變更時通知其他節(jié)點清理本地緩存 push(new CacheMessage(this.name, key)); //此處put沒有意義,會收到自己發(fā)送的緩存key失效消息 // caffeineCache.put(key, value); } @Override public ValueWrapper putIfAbsent(Object key, Object value) { Object cacheKey = getKey(key); // 使用setIfAbsent原子性操作 long expire = getExpire(); boolean setSuccess; setSuccess = redisTemplate.opsForValue().setIfAbsent(getKey(key), toStoreValue(value), Duration.ofSeconds(expire)); Object hasValue; //setNx結(jié)果 if (setSuccess) { push(new CacheMessage(this.name, key)); hasValue = value; }else { hasValue = redisTemplate.opsForValue().get(cacheKey); } caffeineCache.put(key, toStoreValue(value)); return toValueWrapper(hasValue); } @Override public void evict(Object key) { // 先清除redis中緩存數(shù)據(jù),然后清除caffeine中的緩存,避免短時間內(nèi)如果先清除caffeine緩存后其他請求會再從redis里加載到caffeine中 redisTemplate.delete(getKey(key)); push(new CacheMessage(this.name, key)); caffeineCache.invalidate(key); } @Override public void clear() { // 先清除redis中緩存數(shù)據(jù),然后清除caffeine中的緩存,避免短時間內(nèi)如果先清除caffeine緩存后其他請求會再從redis里加載到caffeine中 Set<Object> keys = redisTemplate.keys(this.name.concat(":*")); for (Object key : keys) { redisTemplate.delete(key); } push(new CacheMessage(this.name, null)); caffeineCache.invalidateAll(); } /** * 取值邏輯 * @param key * @return */ @Override protected Object lookup(Object key) { Object cacheKey = getKey(key); Object value = caffeineCache.getIfPresent(key); if (value != null) { logger.debug("從本地緩存中獲得key, the key is : {}", cacheKey); return value; } value = redisTemplate.opsForValue().get(cacheKey); if (value != null) { logger.debug("從redis中獲得值,將值放到本地緩存中, the key is : {}", cacheKey); caffeineCache.put(key, value); } return value; } /** * @description 清理本地緩存 */ public void clearLocal(Object key) { logger.debug("clear local cache, the key is : {}", key); if (key == null) { caffeineCache.invalidateAll(); } else { caffeineCache.invalidate(key); } } //————————————————————————————私有方法—————————————————————————— private Object getKey(Object key) { String keyStr = this.name.concat(":").concat(key.toString()); return StringUtils.isEmpty(this.cachePrefix) ? keyStr : this.cachePrefix.concat(":").concat(keyStr); } private long getExpire() { long expire = defaultExpiration; Long cacheNameExpire = defaultExpires.get(this.name); return cacheNameExpire == null ? expire : cacheNameExpire.longValue(); } /** * @description 緩存變更時通知其他節(jié)點清理本地緩存 */ private void push(CacheMessage message) { redisTemplate.convertAndSend(topic, message); } }
關(guān)于“Redis+Caffeine如何實現(xiàn)分布式二級緩存組件”的內(nèi)容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業(yè)相關(guān)的知識,可以關(guān)注億速云行業(yè)資訊頻道,小編每天都會為大家更新不同的知識點。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。