您好,登錄后才能下訂單哦!
今天小編給大家分享一下Python實現(xiàn)斐波那契數(shù)列的寫法有哪些的相關(guān)知識點,內(nèi)容詳細(xì),邏輯清晰,相信大部分人都還太了解這方面的知識,所以分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后有所收獲,下面我們一起來了解一下吧。
def fibonacci1(n): a, b = 0, 1 for i in range(n): a, b = b, a+b print(a) fibonacci1(3)
或
def fib1(w): a, b = 1, 1 for i in range(w-1): a, b = b, a+b return a print(fib1(3))
[^1]剛好得出這個位置的數(shù)
def fibnaqi2(m): a, b = 0, 1 i = 0 while i < m: print(b) a, b = b, a+b i += 1 fibnaqi2(4)
[^1]剛好得出這個位置的數(shù)
def fib2(q): if q == 1 or q == 2: return 1 return fib2(q-1)+fib2(q-2) print(fib2(9))
def fibnacci3(p): lst = [] for i in range(p): if i == 1 or i == 0: lst.append(1) else: lst.append(lst[i-1]+lst[i-2]) print(lst) fibnacci3(5)
def fibnacci4(k): lis = [] i = 0 while i<k: if i == 0 or i == 1: lis.append(1) else: lis.append(lis[i-2]+lis[i-1]) i += 1 print(lis) fibnacci4(6)
def fibnacci5(o): def fn(i): if i < 2: return 1 else: return (fn(i-2)+fn(i-1)) for i in range(o): print(fn(i)) fibnacci5(8)
def fib3(e): if e == 1: return [1] if e == 2: return [1, 1] fibs = [1, 1] for i in range(2, e): fibs.append(fibs[-1]+fibs[-2]) return fibs print(fib3(12))
題目描述
二次方程式 ax**2 + bx + c = 0 (a、b、c 用戶提供,為實數(shù),a ≠ 0)
# 導(dǎo)入 cmath(復(fù)雜數(shù)學(xué)運算) 模塊 import cmath a = float(input('輸入 a: ')) b = float(input('輸入 b: ')) c = float(input('輸入 c: ')) # 計算 d = (b ** 2) - (4 * a * c) # 兩種求解方式 sol1 = (-b - cmath.sqrt(d)) / (2 * a) sol2 = (-b + cmath.sqrt(d)) / (2 * a) print('結(jié)果為 {0} 和 {1}'.format(sol1, sol2))
# -*- coding = utf-8 -*- # @Time : 2022/7/26 21:48 # @Author : lxw_pro # @File : pandas -8 練習(xí).py # @Software : PyCharm import pandas as pd import numpy as np df = pd.read_excel('text5.xlsx') print(df) print()
程序運行結(jié)果如下:
Unnamed: 0 Unnamed: 0.1 project ... test_time date time
0 0 00:00:00 Python ... 2022-06-20 18:30:20 2022-06-20 18:30:20
1 1 1 Java ... 2022-06-18 19:40:20 2022-06-18 19:40:20
2 2 2 C ... 2022-06-08 13:33:20 2022-06-08 13:33:20
3 3 3 MySQL ... 2021-12-23 11:26:20 2021-12-23 11:26:20
4 4 4 Linux ... 2021-12-20 18:20:20 2021-12-20 18:20:20
5 5 5 Math ... 2022-07-20 16:30:20 2022-07-20 16:30:20
6 6 6 English ... 2022-06-23 15:30:20 2022-06-23 15:30:20
7 7 7 Python ... 2022-07-19 09:30:20 2022-07-19 09:30:20
[8 rows x 7 columns]
41、將test_time列設(shè)置為索引
print(df.set_index('test_time')) print()
程序運行結(jié)果如下:
Unnamed: 0 Unnamed: 0.1 ... date time
test_time ...
2022-06-20 18:30:20 0 00:00:00 ... 2022-06-20 18:30:20
2022-06-18 19:40:20 1 1 ... 2022-06-18 19:40:20
2022-06-08 13:33:20 2 2 ... 2022-06-08 13:33:20
2021-12-23 11:26:20 3 3 ... 2021-12-23 11:26:20
2021-12-20 18:20:20 4 4 ... 2021-12-20 18:20:20
2022-07-20 16:30:20 5 5 ... 2022-07-20 16:30:20
2022-06-23 15:30:20 6 6 ... 2022-06-23 15:30:20
2022-07-19 09:30:20 7 7 ... 2022-07-19 09:30:20
[8 rows x 6 columns]
42、生成一個和df長度相同的隨機數(shù)dataframe
df1 = pd.DataFrame(pd.Series(np.random.randint(1, 10, 8))) print(df1) print()
程序運行結(jié)果如下:
0
0 1
1 3
2 2
3 7
4 7
5 3
6 5
7 1
43、將上一題生成的dataframe與df合并
df = pd.concat([df, df1], axis=1) print(df) print()
程序運行結(jié)果如下:
Unnamed: 0 Unnamed: 0.1 project ... date time 0
0 0 00:00:00 Python ... 2022-06-20 18:30:20 1
1 1 1 Java ... 2022-06-18 19:40:20 3
2 2 2 C ... 2022-06-08 13:33:20 2
3 3 3 MySQL ... 2021-12-23 11:26:20 7
4 4 4 Linux ... 2021-12-20 18:20:20 7
5 5 5 Math ... 2022-07-20 16:30:20 3
6 6 6 English ... 2022-06-23 15:30:20 5
7 7 7 Python ... 2022-07-19 09:30:20 1
[8 rows x 8 columns]
44、生成新的一列new為popularity列減去之前生成隨機數(shù)列
df['new'] = df['popularity'] - df[0] print(df) print()
程序運行結(jié)果如下:
Unnamed: 0 Unnamed: 0.1 project popularity ... date time 0 new
0 0 00:00:00 Python 95 ... 2022-06-20 18:30:20 1 94
1 1 1 Java 92 ... 2022-06-18 19:40:20 3 89
2 2 2 C 145 ... 2022-06-08 13:33:20 2 143
3 3 3 MySQL 141 ... 2021-12-23 11:26:20 7 134
4 4 4 Linux 84 ... 2021-12-20 18:20:20 7 77
5 5 5 Math 148 ... 2022-07-20 16:30:20 3 145
6 6 6 English 146 ... 2022-06-23 15:30:20 5 141
7 7 7 Python 149 ... 2022-07-19 09:30:20 1 148
[8 rows x 9 columns]
45、檢查數(shù)據(jù)中是否含有任何缺失值
jch = df.isnull().values.any() print(jch) # 運行結(jié)果為:False print()
46、將popularity列類型轉(zhuǎn)換為浮點數(shù)
fds = df['popularity'].astype(np.float64) print(fds) print()
程序運行結(jié)果如下:
0 95.0
1 92.0
2 145.0
3 141.0
4 84.0
5 148.0
6 146.0
7 149.0
Name: popularity, dtype: float64
47、計算popularity大于100的次數(shù)
cs = len(df[df['popularity'] > 100]) print(cs) # 運行結(jié)果為:5 print()
48、查看project列共有幾種學(xué)歷
ckj = df['project'].nunique() print(ckj) # 運行結(jié)果為:7 print()
49、查看每科出現(xiàn)的次數(shù)
ckc = df.project.value_counts() print(ckc) print()
程序運行結(jié)果如下:
Python 2
Java 1
C 1
MySQL 1
Linux 1
Math 1
English 1
Name: project, dtype: int64
50、提取popularity與new列的和大于136的最后3行
df1 = df[['popularity', 'new']] hh = df1.apply(np.sum, axis=1) res = df.iloc[np.where(hh > 136)[0][-3:], :] print(res)
程序運行結(jié)果如下:
Unnamed: 0 Unnamed: 0.1 project popularity ... date time 0 new
5 5 5 Math 148 ... 2022-07-20 16:30:20 3 145
6 6 6 English 146 ... 2022-06-23 15:30:20 5 141
7 7 7 Python 149 ... 2022-07-19 09:30:20 1 148
[3 rows x 9 columns]
以上就是“Python實現(xiàn)斐波那契數(shù)列的寫法有哪些”這篇文章的所有內(nèi)容,感謝各位的閱讀!相信大家閱讀完這篇文章都有很大的收獲,小編每天都會為大家更新不同的知識,如果還想學(xué)習(xí)更多的知識,請關(guān)注億速云行業(yè)資訊頻道。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。