您好,登錄后才能下訂單哦!
小編給大家分享一下clickhouse批量插入數(shù)據(jù)及ClickHouse常用命令的示例分析,相信大部分人都還不怎么了解,因此分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后大有收獲,下面讓我們一起去了解一下吧!
ClickHouse是Yandex提供的一個開源的列式存儲數(shù)據(jù)庫管理系統(tǒng),多用于聯(lián)機分析(OLAP)場景,可提供海量數(shù)據(jù)的存儲和分析,同時利用其數(shù)據(jù)壓縮和向量化引擎的特性,能提供快速的數(shù)據(jù)搜索。
sudo yum install yum-utils sudo rpm --import https://repo.yandex.ru/clickhouse/CLICKHOUSE-KEY.GPG sudo yum-config-manager --add-repo https://repo.yandex.ru/clickhouse/rpm/stable/x86_64 sudo yum install clickhouse-server clickhouse-client sudo /etc/init.d/clickhouse-server start clickhouse-client
a).clickhouse-server
CLICKHOUSE_USER=username CLICKHOUSE_LOGDIR=${CLICKHOUSE_HOME}/log/clickhoue-server CLICKHOUSE_LOGDIR_USER=username CLICKHOUSE_DATADIR_OLD=${CLICKHOUSE_HOME}/data/old CLICKHOUSE_DATADIR=${CLICKHOUSE_HOME}/data
b).config.xml
... ... <!-- 配置日志參數(shù) --> <logger> <level>info</level> <log>${CLICKHOUSE_HOME}/log/clickhoue-server/clickhoue-server.log</log> <errorlog>${CLICKHOUSE_HOME}/log/clickhoue-server/clickhoue-server-error.log</errorlog> <size>100M</size> <count>5</count> </logger> <!-- 配置數(shù)據(jù)保存路徑 --> <path>${CLICKHOUSE_HOME}</> <tmp_path>${CLICKHOUSE_HOME}/tmp</> <user_files_path>${CLICKHOUSE_HOME}/user_files</> <!-- 配置監(jiān)聽 --> <listen_host>::</listen_host> <!-- 配置時區(qū) --> <timezone>Asiz/Shanghai</timezone> ... ...
#### a).啟動服務(wù) sudo service clickhouse-server start #### b).停止服務(wù) sudo service clickhouse-server stop
Ⅳ).客戶端訪問
clickhouse-client
CREATE TABLE IF NOT EXISTS database.table_name ON cluster cluster_shardNum_replicasNum( 'id' UInt64, 'name' String, 'time' UInt64, 'age' UInt8, 'flag' UInt8 ) ENGINE = MergeTree PARTITION BY toDate(time/1000) ORDER BY (id,name) SETTINGS index_granularity = 8192
CREATE MATERIALIZED VIEW database.view_name ON cluster cluster_shardNum_replicasNum ENGINE = AggregatingMergeTree PARTITION BY toYYYYMMDD(time) ORDER BY (id,name) AS SELECT toStartOfHour(toDateTime(time/1000)) as time, id, name, sumState( if (flag = 1, 1, 0)) AS successCount, sumState( if (flag = 0, 1, 0)) AS faildCount, sumState( if ((age < 10), 1, 0)) AS rang1Age, sumState( if ((age > 10) AND (age < 20), 2, 0)) AS rang2Age, sumState( if ((age > 20), 3, 0)) AS rang3Age, maxState(age) AS maxAge, minState(age) AS minAge FROM datasource.table_name GROUP BY time,id,name
a).普通數(shù)據(jù)插入
INSERT INTO database.table_name(id, name, age, flag) VALUES(1, 'test', 15, 0)
b).Json數(shù)據(jù)插入
INSERT INTO database.table_name FORMAT JSONEachRow{"id":"1", "name":"test", "age":"11", "flag":"1"}
a).表數(shù)據(jù)查詢
SELECT * FROM database.table_name WHERE id=1
b).物化視圖查詢
SELECT id, name, sumMerge(successCount), sumMerge(faildCount), sumMerge(rang1Age), sumMerge(rang2Age), maxMerge(maxAge), minMerge(minAge) FROM database.view_name WHERE id=1 GROUP BY id, name
CREATE TABLE IF NOT EXISTS database.table_name( 'id' UInt64, 'name' String, 'time' UInt64, 'age' UInt8, 'flag' UInt8 nested_table_name Nested ( sequence UInt32, id UInt64, name String, time UInt64, age UInt8, flag UInt8 socketAddr String, socketRemotePort UInt32, socketLocalPort UInt32, eventTime UInt64, exceptionClassName String, hashCode Int32, nextSpanId UInt64 )) ENGINE = MergeTree PARTITION BY toDate (time / 1000) ORDER BY (id, name, time) SETTINGS index_granularity = 8192
SELECT table1.*,table1.id FROM nest.table_name AS table1 array JOIN nested_table_name AS table2
<dictionaries> <dictionary> <name>url</name> <source> <clickhouse> <host>hostname</host> <port>9000</port> <user>default</user> <password/> <db>dict</db> <table>url_dict</table> </clickhouse> </source> <lifetime> <min>30</min> <max>36</max> </lifetime> <layout> <hashed/> </layout> <structure> <id> <name>id</name> </id> <attribute> <name>hash_code</name> <type>String</type> <null_value/> </attribute> <attribute> <name>url</name> <type>String</type> <null_value/> </attribute> </structure> </dictionary> <dictionary> <name>url_hash</name> <source> <clickhouse> <host>hostname</host> <port>9000</port> <user>default</user> <password/> <db>dict</db> <table>url_hash</table> </clickhouse> </source> <lifetime> <min>30</min> <max>36</max> </lifetime> <layout> <complex_key_hashed/> </layout> <structure> <key> <attribute> <name>hash_code</name> <type>String</type> </attribute> </key> <attribute> <name>url</name> <type>String</type> <null_value/> </attribute> </structure> </dictionary> </dictionaries>
SELECT id, dictGet('name', 'name', toUInt64(name)) AS name, dictGetString('url', 'url', tuple(url)) AS url FROM table_name
clickhouse-client --query="INSERT INTO database.table_name FORMAT CSVWithNames" < /path/import_filename.csv
clickhouse-client --query="SELECT * FROM database.table_name FORMAT CSV" sed 's/"//g' > /path/export_filename.csv
SELECT table, name, partition,active FROM system.parts WHERE database='database_name'
ALTER TABLE database.table_name ON cluster cluster_shardNum_replicasNum detach partition 'partition_id'
SELECT database, table, name, formatReadableSize(sum(data_compressed_bytes) AS c) AS comp, formatReadableSize(sum(data_uncompressed_bytes) AS r) AS raw, c/r AS comp_ratio FROM system.columns WHERE database='database_name' AND table='table_name' GROUP BY name
clickhouse-client --query="SELECT partition,count(*) AS partition_num, formatReadableSize(sum(bytes)) AS disk_size FROM system.columns WHERE database='database_name' " --external --?le=***.sql --name=parts --structure='table String, name String, partition UInt64, engine String' -h hostname
以上是“clickhouse批量插入數(shù)據(jù)及ClickHouse常用命令的示例分析”這篇文章的所有內(nèi)容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內(nèi)容對大家有所幫助,如果還想學(xué)習(xí)更多知識,歡迎關(guān)注億速云行業(yè)資訊頻道!
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。