您好,登錄后才能下訂單哦!
這篇文章將為大家詳細(xì)講解有關(guān)pandas如何使用DataFrame.shift()函數(shù),小編覺得挺實(shí)用的,因此分享給大家做個(gè)參考,希望大家閱讀完這篇文章后可以有所收獲。
pandas DataFrame.shift()函數(shù)可以把數(shù)據(jù)移動(dòng)指定的位數(shù)
period參數(shù)指定移動(dòng)的步幅,可以為正為負(fù).axis指定移動(dòng)的軸,1為行,0為列.
import pandas as pd
data1 = pd.DataFrame({
'a': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
'b': [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
})
print data1
a b
0 0 9
1 1 8
2 2 7
3 3 6
4 4 5
5 5 4
6 6 3
7 7 2
8 8 1
9 9 0
如果想讓 a和b的數(shù)據(jù)都往下移動(dòng)一位:
data2 = data1.shift(axis=0)
print data2
a b
0 NaN NaN
1 0.0 9.0
2 1.0 8.0
3 2.0 7.0
4 3.0 6.0
5 4.0 5.0
6 5.0 4.0
7 6.0 3.0
8 7.0 2.0
9 8.0 1.0
如果是在行上往右移動(dòng)一位:
data3 = data1.shift(axis=1)
print data3
a b
0 NaN 0.0
1 NaN 1.0
2 NaN 2.0
3 NaN 3.0
4 NaN 4.0
5 NaN 5.0
6 NaN 6.0
7 NaN 7.0
8 NaN 8.0
9 NaN 9.0
如果想往上或者往左移動(dòng),可以指定(periods=-1):
data4 = data1.shift(periods=-1, axis=0)
print data4
a b
0 1.0 8.0
1 2.0 7.0
2 3.0 6.0
3 4.0 5.0
4 5.0 4.0
5 6.0 3.0
6 7.0 2.0
7 8.0 1.0
8 9.0 0.0
9 NaN NaN
這里有一組某車站各個(gè)小時(shí)的總進(jìn)站人數(shù)和總出站人數(shù)的數(shù)據(jù):
entries_and_exits = pd.DataFrame({
'ENTRIESn': [3144312, 3144335, 3144353, 3144424, 3144594,
3144808, 3144895, 3144905, 3144941, 3145094],
'EXITSn': [1088151, 1088159, 1088177, 1088231, 1088275,
1088317, 1088328, 1088331, 1088420, 1088753]
})
要求計(jì)算每個(gè)小時(shí)該車站進(jìn)出站人數(shù)
思路: 把第n+1小時(shí)的總?cè)藬?shù)-第n小時(shí)的總?cè)藬?shù),就是這個(gè)小時(shí)里的進(jìn)出站人數(shù)
entries_and_exits_hourly = entries_and_exits - entries_and_exits.shift(axis=0)print(entries_and_exits_hourly.fillna(0)) #最后用0來填補(bǔ)NaN
ENTRIESn EXITSn
0 0.0 0.0
1 23.0 8.0
2 18.0 18.0
3 71.0 54.0
4 170.0 44.0
5 214.0 42.0
6 87.0 11.0
7 10.0 3.0
8 36.0 89.0
9 153.0 333.0
關(guān)于“pandas如何使用DataFrame.shift()函數(shù)”這篇文章就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,使各位可以學(xué)到更多知識,如果覺得文章不錯(cuò),請把它分享出去讓更多的人看到。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。