溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶服務(wù)條款》

Apache?Avro數(shù)據(jù)怎么生成

發(fā)布時(shí)間:2021-12-31 16:44:45 來(lái)源:億速云 閱讀:228 作者:iii 欄目:開(kāi)發(fā)技術(shù)

這篇文章主要講解了“Apache Avro數(shù)據(jù)怎么生成”,文中的講解內(nèi)容簡(jiǎn)單清晰,易于學(xué)習(xí)與理解,下面請(qǐng)大家跟著小編的思路慢慢深入,一起來(lái)研究和學(xué)習(xí)“Apache Avro數(shù)據(jù)怎么生成”吧!

Avro簡(jiǎn)介

avro是一個(gè)數(shù)據(jù)序列化系統(tǒng)

提供了:

  • 豐富的數(shù)據(jù)結(jié)構(gòu)

  • 緊湊的,快速的,二進(jìn)制的數(shù)據(jù)格式

  • 一種文件格式,用于存儲(chǔ)持久化數(shù)據(jù)

  • 遠(yuǎn)程過(guò)程調(diào)用系統(tǒng)(RPC)

  • 和動(dòng)態(tài)語(yǔ)言的簡(jiǎn)單交互。并不需要為數(shù)據(jù)文件讀寫產(chǎn)生代碼,也不需要使用或?qū)崿F(xiàn)RPC協(xié)議。代碼生成是一種優(yōu)化方式,但是只對(duì)于靜態(tài)語(yǔ)言有意義。

技術(shù)背景

隨著互聯(lián)網(wǎng)高速的發(fā)展,云計(jì)算、大數(shù)據(jù)、人工智能AI、物聯(lián)網(wǎng)等前沿技術(shù)已然成為當(dāng)今時(shí)代主流的高新技術(shù),諸如電商網(wǎng)站、人臉識(shí)別、無(wú)人駕駛、智能家居、智慧城市等等,不僅方面方便了人們的衣食住行,背后更是時(shí)時(shí)刻刻有大量的數(shù)據(jù)在經(jīng)過(guò)各種各樣的系統(tǒng)平臺(tái)的采集、清晰、分析,而保證數(shù)據(jù)的低時(shí)延、高吞吐、安全性就顯得尤為重要,Apache Avro本身通過(guò)Schema的方式序列化后進(jìn)行二進(jìn)制傳輸,一方面保證了數(shù)據(jù)的高速傳輸,另一方面保證了數(shù)據(jù)安全性,avro當(dāng)前在各個(gè)行業(yè)的應(yīng)用越來(lái)越廣泛,如何對(duì)avro數(shù)據(jù)進(jìn)行處理解析應(yīng)用就格外重要,本文將演示如果序列化生成avro數(shù)據(jù),并使用FlinkSQL進(jìn)行解析。

本文是avro解析的demo,當(dāng)前FlinkSQL僅適用于簡(jiǎn)單的avro數(shù)據(jù)解析,復(fù)雜嵌套avro數(shù)據(jù)暫時(shí)不支持。

場(chǎng)景介紹

本文主要介紹以下三個(gè)重點(diǎn)內(nèi)容:

  • 如何序列化生成Avro數(shù)據(jù)

  • 如何反序列化解析Avro數(shù)據(jù)

  • 如何使用FlinkSQL解析Avro數(shù)據(jù)

前提條件

  • 了解avro是什么,可參考apache avro官網(wǎng)快速入門指南

  • 了解avro應(yīng)用場(chǎng)景

操作步驟

1、新建avro maven工程項(xiàng)目,配置pom依賴

Apache?Avro數(shù)據(jù)怎么生成

pom文件內(nèi)容如下:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.huawei.bigdata</groupId>
    <artifactId>avrodemo</artifactId>
    <version>1.0-SNAPSHOT</version>
    <dependencies>
        <dependency>
            <groupId>org.apache.avro</groupId>
            <artifactId>avro</artifactId>
            <version>1.8.1</version>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.avro</groupId>
                <artifactId>avro-maven-plugin</artifactId>
                <version>1.8.1</version>
                <executions>
                    <execution>
                        <phase>generate-sources</phase>
                        <goals>
                            <goal>schema</goal>
                        </goals>
                        <configuration>
                            <sourceDirectory>${project.basedir}/src/main/avro/</sourceDirectory>
                            <outputDirectory>${project.basedir}/src/main/java/</outputDirectory>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <configuration>
                    <source>1.6</source>
                    <target>1.6</target>
                </configuration>
            </plugin>
        </plugins>
    </build>

</project>

注意:以上pom文件配置了自動(dòng)生成類的路徑,即${project.basedir}/src/main/avro/和${project.basedir}/src/main/java/,這樣配置之后,在執(zhí)行mvn命令的時(shí)候,這個(gè)插件就會(huì)自動(dòng)將此目錄下的avsc schema生成類文件,并放到后者這個(gè)目錄下。如果沒(méi)有生成avro目錄,手動(dòng)創(chuàng)建一下即可。

2、定義schema

使用JSON為Avro定義schema。schema由基本類型(null,boolean, int, long, float, double, bytes 和string)和復(fù)雜類型(record, enum, array, map, union, 和fixed)組成。例如,以下定義一個(gè)user的schema,在main目錄下創(chuàng)建一個(gè)avro目錄,然后在avro目錄下新建文件 user.avsc :

{"namespace": "lancoo.ecbdc.pre",
 "type": "record",
 "name": "User",
 "fields": [
     {"name": "name", "type": "string"},
     {"name": "favorite_number",  "type": ["int", "null"]},
     {"name": "favorite_color", "type": ["string", "null"]}
 ]
}

Apache?Avro數(shù)據(jù)怎么生成

3、編譯schema

點(diǎn)擊maven projects項(xiàng)目的compile進(jìn)行編譯,會(huì)自動(dòng)在創(chuàng)建namespace路徑和User類代碼

Apache?Avro數(shù)據(jù)怎么生成

4、序列化

創(chuàng)建TestUser類,用于序列化生成數(shù)據(jù)

User user1 = new User();
user1.setName("Alyssa");
user1.setFavoriteNumber(256);
// Leave favorite col or null

// Alternate constructor
User user2 = new User("Ben", 7, "red");

// Construct via builder
User user3 = User.newBuilder()
        .setName("Charlie")
        .setFavoriteColor("blue")
        .setFavoriteNumber(null)
        .build();

// Serialize user1, user2 and user3 to disk
DatumWriter<User> userDatumWriter = new SpecificDatumWriter<User>(User.class);
DataFileWriter<User> dataFileWriter = new DataFileWriter<User>(userDatumWriter);
dataFileWriter.create(user1.getSchema(), new File("user_generic.avro"));
dataFileWriter.append(user1);
dataFileWriter.append(user2);
dataFileWriter.append(user3);
dataFileWriter.close();

執(zhí)行序列化程序后,會(huì)在項(xiàng)目的同級(jí)目錄下生成avro數(shù)據(jù)

Apache?Avro數(shù)據(jù)怎么生成

user_generic.avro內(nèi)容如下:

Objavro.schema?{"type":"record","name":"User","namespace":"lancoo.ecbdc.pre","fields":[{"name":"name","type":"string"},{"name":"favorite_number","type":["int","null"]},{"name":"favorite_color","type":["string","null"]}]}

5、反序列化

通過(guò)反序列化代碼解析avro數(shù)據(jù)

// Deserialize Users from disk
DatumReader<User> userDatumReader = new SpecificDatumReader<User>(User.class);
DataFileReader<User> dataFileReader = new DataFileReader<User>(new File("user_generic.avro"), userDatumReader);
User user = null;
while (dataFileReader.hasNext()) {
    // Reuse user object by passing it to next(). This saves us from
    // allocating and garbage collecting many objects for files with
    // many items.
    user = dataFileReader.next(user);
    System.out.println(user);
}

執(zhí)行反序列化代碼解析user_generic.avro

Apache?Avro數(shù)據(jù)怎么生成

avro數(shù)據(jù)解析成功。

6、將user_generic.avro上傳至hdfs路徑

hdfs dfs -mkdir -p /tmp/lztest/
hdfs dfs -put user_generic.avro /tmp/lztest/

Apache?Avro數(shù)據(jù)怎么生成

7、配置flinkserver

準(zhǔn)備avro jar包

將flink-sql-avro-*.jar、flink-sql-avro-confluent-registry-*.jar放入flinkserver lib,將下面的命令在所有flinkserver節(jié)點(diǎn)執(zhí)行

cp /opt/huawei/Bigdata/FusionInsight_Flink_8.1.2/install/FusionInsight-Flink-1.12.2/flink/opt/flink-sql-avro*.jar /opt/huawei/Bigdata/FusionInsight_Flink_8.1.3/install/FusionInsight-Flink-1.12.2/flink/lib
chmod 500 flink-sql-avro*.jar
chown omm:wheel flink-sql-avro*.jar

Apache?Avro數(shù)據(jù)怎么生成

同時(shí)重啟FlinkServer實(shí)例,重啟完成后查看avro包是否被上傳

hdfs dfs -ls /FusionInsight_FlinkServer/8.1.2-312005/lib

Apache?Avro數(shù)據(jù)怎么生成

8、編寫FlinkSQL

CREATE TABLE testHdfs(
  name String,
  favorite_number int,
  favorite_color String
) WITH(
  'connector' = 'filesystem',
  'path' = 'hdfs:///tmp/lztest/user_generic.avro',
  'format' = 'avro'
);CREATE TABLE KafkaTable (
  name String,
  favorite_number int,
  favorite_color String
) WITH (
  'connector' = 'kafka',
  'topic' = 'testavro',
  'properties.bootstrap.servers' = '96.10.2.1:21005',
  'properties.group.id' = 'testGroup',
  'scan.startup.mode' = 'latest-offset',
  'format' = 'avro'
);
insert into
  KafkaTable
select
  *
from
  testHdfs;

Apache?Avro數(shù)據(jù)怎么生成

保存提交任務(wù)

9、查看對(duì)應(yīng)topic中是否有數(shù)據(jù)

Apache?Avro數(shù)據(jù)怎么生成

FlinkSQL解析avro數(shù)據(jù)成功。

感謝各位的閱讀,以上就是“Apache Avro數(shù)據(jù)怎么生成”的內(nèi)容了,經(jīng)過(guò)本文的學(xué)習(xí)后,相信大家對(duì)Apache Avro數(shù)據(jù)怎么生成這一問(wèn)題有了更深刻的體會(huì),具體使用情況還需要大家實(shí)踐驗(yàn)證。這里是億速云,小編將為大家推送更多相關(guān)知識(shí)點(diǎn)的文章,歡迎關(guān)注!

向AI問(wèn)一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI