溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務(wù)條款》

Libpcap tutorial-02

發(fā)布時間:2020-07-07 14:57:37 來源:網(wǎng)絡(luò) 閱讀:445 作者:hanchengen 欄目:網(wǎng)絡(luò)安全

Capturing Our First Packet


Well now we sort of know the nature of packet capture, we have identified that we do in fact have an interface to pull things from, how about we go ahead and grab a packet!
"Just give me the damn example and let me hack...", you cry
Very well..... Here you go.. download from here..  testpcap1.c or just cut and paste below.

/***************************************************
* file:     testpcap1.c
*
* Simple single packet capture program
*****************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <pcap.h> /* 加入報錯請嘗試用 pcap/pcap.h */
#include <errno.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netinet/if_ether.h> /* 包含 net/ethernet.h */

int main(int argc, char **argv)
{
    int i;
    char *dev; 
    char errbuf[PCAP_ERRBUF_SIZE];
    pcap_t* descr;
    const u_char *packet;
    struct pcap_pkthdr hdr;     /* pcap.h */
    struct ether_header *eptr;  /* net/ethernet.h */

    u_char *ptr; /* 打印輸出硬件頭信息 */

    /* 抓取網(wǎng)卡 */
    dev = pcap_lookupdev(errbuf);

    if(dev == NULL)
    {
        printf("%s\n",errbuf);
        exit(1);
    }

    
    printf("DEV: %s\n",dev);

    /* 
       打開網(wǎng)卡,準(zhǔn)備監(jiān)聽
       pcap_t *pcap_open_live(char *device,int snaplen, int promisc,int to_ms,
       char *ebuf)

       snaplen - 抓取的最大字節(jié)
       promisc - 設(shè)置網(wǎng)卡為混雜模式
       to_ms   - 等待時間,單位 ms
       errbuf  - 保存錯誤信息

       Note if you change "prmisc" param to anything other than zero, you will
       get all packets your device sees, whether they are intendeed for you or
       not!! Be sure you know the rules of the network you are running on
       before you set your card in promiscuous mode!!    
       注意:如果你將網(wǎng)卡的模式從混雜模式改為任何一種其他模式,你將會監(jiān)聽到你的網(wǎng)卡能看到的所有數(shù)據(jù)包,無論是否是你想要的,再更新你網(wǎng)卡模式時,一定要確認(rèn)你了解你正在使用網(wǎng)卡的知識
     */
     
    descr = pcap_open_live(dev,BUFSIZ,0,-1,errbuf);

    if(descr == NULL)
    {
        printf("pcap_open_live(): %s\n",errbuf);
        exit(1);
    }


    /*
                  
       u_char *pcap_next(pcap_t *p,struct pcap_pkthdr *h) 

                                 
       從descr抓取一個數(shù)據(jù)包
     
    */

    packet = pcap_next(descr,&hdr);

    if(packet == NULL)
    {
        printf("Didn't grab packet\n");
        exit(1);
    }

    /*  
        pcap_pkthdr 結(jié)構(gòu)體詳解
        struct pcap_pkthdr {
        struct timeval ts;   ts是一個結(jié)構(gòu)struct timeval,它有兩個部分,第一部分是1900開始以來的秒數(shù),第二部分是當(dāng)前秒之后的毫秒數(shù)
        bpf_u_int32 caplen;  表示抓到的數(shù)據(jù)長度
        bpf_u_int32 len;     表示數(shù)據(jù)包的實際長度
        }
     */

    printf("Grabbed packet of length %d\n",hdr.len);
    printf("Recieved at ..... %s\n",ctime((const time_t*)&hdr.ts.tv_sec)); 
    printf("Ethernet address length is %d\n",ETHER_HDR_LEN);

    /* 分析 ether 頭部 */
    eptr = (struct ether_header *) packet;

    /* 檢查獲取到數(shù)據(jù)包的類型 */
    if (ntohs (eptr->ether_type) == ETHERTYPE_IP)
    {
        printf("Ethernet type hex:%x dec:%d is an IP packet\n",
                ntohs(eptr->ether_type),
                ntohs(eptr->ether_type));
    }else  if (ntohs (eptr->ether_type) == ETHERTYPE_ARP)
    {
        printf("Ethernet type hex:%x dec:%d is an ARP packet\n",
                ntohs(eptr->ether_type),
                ntohs(eptr->ether_type));
    }else {
        printf("Ethernet type %x not IP", ntohs(eptr->ether_type));
        exit(1);
    }

    /* copied from Steven's UNP */
    ptr = eptr->ether_dhost;
    i = ETHER_ADDR_LEN;
    
    printf(" Destination Address:  ");
    do{
        printf("%s%x",(i == ETHER_ADDR_LEN) ? " " : ":",*ptr++);
    }while(--i>0);
    
    printf("\n");

    ptr = eptr->ether_shost;
    i = ETHER_ADDR_LEN;
    printf(" Source Address:  ");
    do{
        printf("%s%x",(i == ETHER_ADDR_LEN) ? " " : ":",*ptr++);
    }while(--i>0);
    printf("\n");

    return 0;
}

Well, that wasn't too bad was it?! Lets give her a test run ..

[root@pepe libpcap]# ./a.out
DEV: eth0
Grabbed packet of length 76
Recieved at time..... Mon Mar 12 22:23:29 2001

Ethernet address length is 14
Ethernet type hex:800 dec:2048 is an IP packet
 Destination Address:   0:20:78:d1:e8:1
 Source Address:   0:a0:cc:56:c2:91
[root@pepe libpcap]#

After typing a.out I jumped into another terminal and tried to ping www.google.com.  The output captured the ICMP packet used to ping www.google.com.  If you don't know exactly what goes on under the covers of a network you may be curios how the computer obtained the destination ethernet address.  Aha! You don't actually think that the destination address of the ethernet packet is the same as the machine at www.google.com do you!?
The destination address is the next hop address of the packet, most likely your network gateway ... aka the computer that ties your network to the internet.  The packet must first find its way to your gateway which will then forward it to the next hop based on ist routing table. Lets do a quick sanity check to see if we in fact are sending to the gateway ....  You can use the route command to look at your local computer's routing table.  The routing table will tell you the next hop for each destination.  The last entry (default) is for all packets not sent locally (127 subnet) or to the 192.16.1 subnet.  These packets are forwarded to 192.168.1.1.

[root@pepe libpcap]# /sbin/route 
Kernel IP routing table
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
192.168.1.0     *               255.255.255.0   U     0      0        0 eth0
127.0.0.0       *               255.0.0.0       U     0      0        0 lo
default         192.168.1.1     0.0.0.0         UG    0      0        0 eth0

we can then use the arpcommand determine the hardware address for 192.168.1.1.

[root@pepe libpcap]# /sbin/arp 
Address			HWtype	HWaddress	    Flags Mask		  Iface
192.168.1.1            	ether   00:20:78:D1:E8:01   C                     eth0

If your gateway is not in your arp cache, try and ping it, and then retry the arp command.  The point is this, in order for your computer to send the packet it must first get the MAC address of the next hop (00:20:78:D1:E8:01 for my network).

An obvious follow-up question is, "how did my computer know the gateway hardware address"?  Let me then digress for a moment.  My computer knows the IP address of the gateway.  As you can see from the handy-dandyarp command there is an internal table (the arp cache) which maps IP addresses to hardware addresses.

Hardware addresses on ethernet are obtained using the Address Resolution Protocol or ARP. ARP is is described in RFC826 which can be found...  Here!  It works as follows.  If my computer wants to know the hardware address for the computer with IP 1.2.3.4, it sends and ARP request packet to Ethernet broadcast out of the Interface which 1.2.3.4. as attached.  All computers connected to this interface (including 1.2.3.4) should recevie the packet and process the requests.  However, only 1.2.3.4 should issue a reply which will contain its Ethernet address.  On receipt of the reply, my computer will "cache" out the hardware address for all subsequent packets sent to 1.2.3.4 (until the cache entry times out). ARP packets are of Thernet type...ETHERTYPE_ARP which is defined in net/ethernet.h as follows.

#define	ETHERTYPE_ARP		0x0806		/* Address resolution */

You can force an Ethernet ARP request by clearing your computer's ARP cache.  Below I do this, and then run the above program again to grab the outgoing ARP request.

[root@pepe libpcap]# /sbin/arp -n    # look at arp cache 
Address			HWtype	HWaddress	    Flags Mask		  Iface
192.168.1.1            	ether   00:20:78:D1:E8:01   C                     eth0

[root@pepe libpcap]# /sbin/arp -n -d 192.168.1.1  #delete gateqay entrance
[root@pepe libpcap]# /sbin/arp -n   #make sure gateway hardware addy is empty             
Address			HWtype	HWaddress	    Flags Mask		  Iface
192.168.1.1            	        (incomplete)                              eth0
[root@pepe libpcap]# ./a.out
DEV: eth0
Grabbed packet of length 42
Recieved at time..... Tue Mar 13 00:36:49 2001

Ethernet address length is 14
Ethernet type hex:806 dec:2054 is an ARP packet
 Destination Address:   ff:ff:ff:ff:ff:ff
 Source Address:   0:a0:cc:56:c2:91
[root@pepe libpcap]

So as you can see, once the hardware address was removed the the cache, my computer needed to send an arp request to broadcast (i.e. ff:ff:ff:ff:ff:ff) looking for the owner of the higher level address, in this case IP 192.168.1.1.  What do you think would happen if you cleared your arp cache and modified testpcap1.c to capture 2 packets?!  Hey I know why don't you try it :-P~~~~

Lets now disect the packet by checking out <net/ethernet.h> right now we are not concerned with the network or transport protocol, we just want to peer into the ethernet headers....  Lets say that we are runnig at 10Mb/s...

/* 10Mb/s ethernet header */
struct ether_header
{
  u_int8_t  ether_dhost[ETH_ALEN];	/* destination eth addr	*/
  u_int8_t  ether_shost[ETH_ALEN];	/* source ether addr	*/
  u_int16_t ether_type;		        /* packet type ID field	*/
} __attribute__ ((__packed__));

So it looks like the first ETH_ALEN bytes are the destination ethernet address (look at linux/if_ether.h for the definition of ETH_ALEN :-) of the packet (presumedly your machine). The next ETH_ALEN bytes are the source. Finally, the last word is the packet type.  Here are the protocol ID's on my machine from net/ethernet.h

/* Ethernet protocol ID's */
#define	ETHERTYPE_PUP		0x0200      /* Xerox PUP */
#define	ETHERTYPE_IP		0x0800		/* IP */
#define	ETHERTYPE_ARP		0x0806		/* Address resolution */
#define	ETHERTYPE_REVARP	0x8035		/* Reverse ARP */

For the purpose of this tutorial I will be focusing on IP and perhaps a little bit on ARP... the truth is I have no idea what the hell Xerox PUP is.

Allright so where are we now?  We know the most basic of methods for grabbing a packet.  We covered how hardware addresses are resolved and what a basic ethernet packet looks like. Still we are using a ver small subset of the functionality of libpcap, and we haven't even begun to peer into the packets themselves (other than the hardware headers) so much to do and so little time :-)  As you can probably tell by now, it would be near impossible to do any real protocol analysis with a program that simply captures one packet at a time.  What we really want to do is write a simple packet capturing engine that will nab as many packets as possible while filtering out those we dont want.  In the next section we will construct a simple packet capturing engine which will aid us in packet dissection later on.


向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI