您好,登錄后才能下訂單哦!
這篇文章主要講解了“Java如何實現(xiàn)權(quán)重隨機(jī)算法”,文中的講解內(nèi)容簡單清晰,易于學(xué)習(xí)與理解,下面請大家跟著小編的思路慢慢深入,一起來研究和學(xué)習(xí)“Java如何實現(xiàn)權(quán)重隨機(jī)算法”吧!
應(yīng)用場景
本文目標(biāo)
算法詳解
權(quán)重比例
Java 實現(xiàn)
客戶端負(fù)載均衡,例如 Nacos 提供的客戶端負(fù)載均衡就是使用了該算法
游戲抽獎(普通道具的權(quán)重很高,稀有道具的權(quán)重很低)
Java 實現(xiàn)權(quán)重隨機(jī)算法
比如我們現(xiàn)在有三臺 Server,權(quán)重分別為1,3,2。現(xiàn)在想對三臺 Server 做負(fù)載均衡
Server1 Server2 Server3 weight weight weight 1 3 2
我們算出每臺 Server 的權(quán)重比例,權(quán)重比例 = 自己的權(quán)重 / 總權(quán)重
server1 server2 server3 weight weight weight 1 3 2 radio radio radio 1/6 3/6 2/6
根據(jù)權(quán)重比例計算覆蓋區(qū)域
server1 server2 server3 ^ ^ ^ |---------||---------|---------|---------||---------|---------|| 0 1/6 4/6 6/6 ^ ^ ^ 0.16666667 0.66666667 1.0
根據(jù)權(quán)重負(fù)載均衡
如步驟2所示,每個 server 都有自己的范圍,把每一個格子作為單位來看的話
server1 (0,1]
server2 (1,4]
server3 (4,6]
使用隨機(jī)數(shù)函數(shù),取 (0,6] 之間的隨機(jī)數(shù),根據(jù)隨機(jī)數(shù)落在哪個范圍決定如何選擇。例如隨機(jī)數(shù)為 2,處于 (1,4] 范圍,那么就選擇 server2。
思路大概就是這樣,落實到代碼上,用一個數(shù)組 [0.16666667, 0.66666667, 1] 來表示這三個 server 的覆蓋范圍,使用 ThreadLocalRandom 或者 Random 獲取 [0,1) 內(nèi)的隨機(jī)數(shù)。然后使用二分查找法快速定位隨機(jī)數(shù)處于哪個區(qū)間
代碼基本上與 com.alibaba.nacos.client.naming.utils.Chooser 一致,在可讀性方面做了下優(yōu)化。
import java.util.*; import java.util.concurrent.ThreadLocalRandom; import java.util.concurrent.atomic.AtomicInteger; public class WeightRandom<T> { private final List<T> items = new ArrayList<>(); private double[] weights; public WeightRandom(List<ItemWithWeight<T>> itemsWithWeight) { this.calWeights(itemsWithWeight); } /** * 計算權(quán)重,初始化或者重新定義權(quán)重時使用 * */ public void calWeights(List<ItemWithWeight<T>> itemsWithWeight) { items.clear(); // 計算權(quán)重總和 double originWeightSum = 0; for (ItemWithWeight<T> itemWithWeight : itemsWithWeight) { double weight = itemWithWeight.getWeight(); if (weight <= 0) { continue; } items.add(itemWithWeight.getItem()); if (Double.isInfinite(weight)) { weight = 10000.0D; } if (Double.isNaN(weight)) { weight = 1.0D; } originWeightSum += weight; } // 計算每個item的實際權(quán)重比例 double[] actualWeightRatios = new double[items.size()]; int index = 0; for (ItemWithWeight<T> itemWithWeight : itemsWithWeight) { double weight = itemWithWeight.getWeight(); if (weight <= 0) { continue; } actualWeightRatios[index++] = weight / originWeightSum; } // 計算每個item的權(quán)重范圍 // 權(quán)重范圍起始位置 weights = new double[items.size()]; double weightRangeStartPos = 0; for (int i = 0; i < index; i++) { weights[i] = weightRangeStartPos + actualWeightRatios[i]; weightRangeStartPos += actualWeightRatios[i]; } } /** * 基于權(quán)重隨機(jī)算法選擇 * */ public T choose() { double random = ThreadLocalRandom.current().nextDouble(); int index = Arrays.binarySearch(weights, random); if (index < 0) { index = -index - 1; } else { return items.get(index); } if (index < weights.length && random < weights[index]) { return items.get(index); } // 通常不會走到這里,為了保證能得到正確的返回,這里隨便返回一個 return items.get(0); } public static class ItemWithWeight<T> { T item; double weight; public ItemWithWeight() { } public ItemWithWeight(T item, double weight) { this.item = item; this.weight = weight; } public T getItem() { return item; } public void setItem(T item) { this.item = item; } public double getWeight() { return weight; } public void setWeight(double weight) { this.weight = weight; } } public static void main(String[] args) { // for test int sampleCount = 1_000_000; ItemWithWeight<String> server1 = new ItemWithWeight<>("server1", 1.0); ItemWithWeight<String> server2 = new ItemWithWeight<>("server2", 3.0); ItemWithWeight<String> server3 = new ItemWithWeight<>("server3", 2.0); WeightRandom<String> weightRandom = new WeightRandom<>(Arrays.asList(server1, server2, server3)); // 統(tǒng)計 (這里用 AtomicInteger 僅僅是因為寫起來比較方便,這是一個單線程測試) Map<String, AtomicInteger> statistics = new HashMap<>(); for (int i = 0; i < sampleCount; i++) { statistics .computeIfAbsent(weightRandom.choose(), (k) -> new AtomicInteger()) .incrementAndGet(); } statistics.forEach((k, v) -> { double hit = (double) v.get() / sampleCount; System.out.println(k + ", hit:" + hit); }); } }
這里重點說一下 Arrays.binarySearch(weights, random),這個 API 我之前沒有用過導(dǎo)致我在讀 Nacos 源碼時,對這塊的操作十分費(fèi)解
來看一下 java API 文檔對該方法返回值的解釋
Returns:
index of the search key, if it is contained in the array; otherwise, (-(insertion point) - 1). The insertion point is defined as the point at which the key would be inserted into the array: the index of the first element greater than the key, or a.length if all elements in the array are less than the specified key. Note that this guarantees that the return value will be >= 0 if and only if the key is found.
解釋下,首先該方法的作用是通過指定的 key 搜索數(shù)組。(前提條件是要保證數(shù)組的順序是從小到大排序過的)
如果數(shù)組中包含該 key,則返回對應(yīng)的索引
如果不包含該 key,則返回該 key 的 (-(insertion point)-1)
insertion point(插入點):該 key 應(yīng)該在數(shù)組的哪個位置。舉個例子,數(shù)組 [1,3,5],我的搜索 key 為 2,按照順序排的話 2 應(yīng)該在數(shù)組的 index = 1 的位置,所以此時 insertion point = 1。
(這里 jdk 將能查到 key 和 查不到 key 兩種情況做了區(qū)分。為了將未找到的情況全部返回負(fù)數(shù),所以做了 (-(insertion point)-1) 這樣的操作)
看到這,我們就懂了,insertion point 就是我們需要的,現(xiàn)在我們用小學(xué)數(shù)學(xué)來推導(dǎo)一下如何計算 insertion point
// 小學(xué)數(shù)學(xué)推導(dǎo)一下 insertion point 如何計算 returnValue = (- (insertionPoint) - 1) insertionPoint = (- (returnValue + 1) ) // 所以就有了上邊代碼中的 if (index < 0) { index = -index - 1; }
感謝各位的閱讀,以上就是“Java如何實現(xiàn)權(quán)重隨機(jī)算法”的內(nèi)容了,經(jīng)過本文的學(xué)習(xí)后,相信大家對Java如何實現(xiàn)權(quán)重隨機(jī)算法這一問題有了更深刻的體會,具體使用情況還需要大家實踐驗證。這里是億速云,小編將為大家推送更多相關(guān)知識點的文章,歡迎關(guān)注!
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。