您好,登錄后才能下訂單哦!
這篇文章給大家分享的是有關(guān)怎么使用Python實現(xiàn)感知器算法的內(nèi)容。小編覺得挺實用的,因此分享給大家做個參考,一起跟隨小編過來看看吧。
該輪迭代分類結(jié)果全部正確,判別函數(shù)為g(x)=-2x1+1
(1)由數(shù)學(xué)求解過程可知:
(2)程序運行結(jié)果
(3)繪圖結(jié)果
''' 20210610 Julyer 感知器 ''' import numpy as np import matplotlib.pyplot as plt def get_zgxl(xn, a): ''' 獲取增廣向量 :param x: 數(shù)組 :param a: 1或-1 :return: ''' temp = [] if a == 1: xn.append(1) if a == -1: for i in range(len(xn)): temp.append(xn[i]*(-1)) temp.append(-1) xn = temp # print('xn:'+ str(np.array(x).reshape(-1, 1))) return np.array(xn).reshape(-1, 1) def calculate_w(w, xn): ''' 已知xn和初始值,計算w :param w: 列向量 --> wT:行向量 :param xn: 列向量 :return: ''' # wT = w.reshape(1, -1) # 列向量轉(zhuǎn)變?yōu)樾邢蛄?,改變w wT = w.T # 列向量轉(zhuǎn)變?yōu)樾邢蛄?,不改變w wTx = np.dot(wT, xn).reshape(-1) # 行向量乘以列向量, 維度降為1。 #wTx = wT@xn # 行向量乘以列向量 if wTx > 0: w_value = w else: w_value = np.add(w, xn) # print("w_update的shape" + str(w_update.shape)) #print("wTx:" + str(wTx)) return w_value, wTx # w_value為列向量, wTx為一個數(shù) def fit_one(w1, x1, x2, x3, x4): ''' 完成一輪迭代,遍歷一次數(shù)據(jù),更新到w5。 :param w1: 初始值 :param x1: :param x2: :param x3: :param x4: :return: 返回w5和wTx的列表。 ''' wTx_list = [] update_w = w1 for i in range(0, len(x_data)): #len計算樣本個數(shù),通過循環(huán)更新w update_w, wTx = calculate_w(update_w, x_data[i]) wTx_list.append(wTx) #print(wTx_list) return update_w, wTx_list def draw_plot(class1, class2, update_w): plt.figure() x_coordinate = [] y_coordinate = [] for i in range(len(class1)): x_coordinate.append(class1[i][0]) y_coordinate.append(class1[i][1]) plt.scatter(x_coordinate, y_coordinate, color='orange', label='class1') x_coordinate = [] y_coordinate = [] for i in range(len(class2)): x_coordinate.append(class2[i][0]) y_coordinate.append(class2[i][1]) plt.scatter(x_coordinate, y_coordinate, color='green', label='class2') w_reshape = update_w.reshape(-1) #print x = np.linspace(0, 2, 5) if w_reshape[1] == 0: plt.axvline(x = (-1) * w_reshape[2]/w_reshape[0]) else: plt.plot(x, (x*w_reshape[0]*(-1) + w_reshape[2]*(-1))/w_reshape[1]) plt.title('result of perception') plt.xlabel('x1') plt.ylabel('x2') plt.legend() plt.show() if __name__ == '__main__': x1 = [0, 0] x2 = [0, 1] x3 = [1, 0] x4 = [1, 1] class1 = [x1, x2] class2 = [x3, x4] x1 = get_zgxl(x1, 1) x2 = get_zgxl(x2, 1) x3 = get_zgxl(x3, -1) x4 = get_zgxl(x4, -1) x_data = [x1, x2, x3, x4] # print(x_data) w1 = np.zeros((3, 1)) # 初始值w1為列向量 #print('w1:' + str(w1) + '\n') update_w = w1 update_w, wTx_list = fit_one(update_w, x1, x2, x3, x4) count = 0 iter_number = 0 for wTx in wTx_list: if wTx > 0: count += 1 if count < 4: update_w, wTx_list = fit_one(update_w, x1, x2, x3, x4) iter_number += 1 else: break print('迭代次數(shù)為:' + str(iter_number)) print('迭代終止時的w:'+'\n' + str(update_w)) #print(wTx_list) draw_plot(class1, class2, update_w)
感謝各位的閱讀!關(guān)于“怎么使用Python實現(xiàn)感知器算法”這篇文章就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,讓大家可以學(xué)到更多知識,如果覺得文章不錯,可以把它分享出去讓更多的人看到吧!
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。