溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶(hù)服務(wù)條款》

Spark2.2.0中RDD轉(zhuǎn)DataFrame的方式是怎樣的

發(fā)布時(shí)間:2021-12-16 20:32:58 來(lái)源:億速云 閱讀:160 作者:柒染 欄目:大數(shù)據(jù)

Spark2.2.0中RDD轉(zhuǎn)DataFrame的方式是怎樣的,相信很多沒(méi)有經(jīng)驗(yàn)的人對(duì)此束手無(wú)策,為此本文總結(jié)了問(wèn)題出現(xiàn)的原因和解決方法,通過(guò)這篇文章希望你能解決這個(gè)問(wèn)題。

Spark SQL將現(xiàn)有的RDDs轉(zhuǎn)換為數(shù)據(jù)集。

方法:使用反射來(lái)推斷包含特定對(duì)象類(lèi)型的RDD的模式。這種基于反射的方法使代碼更加簡(jiǎn)潔,并且當(dāng)您在編寫(xiě)Spark應(yīng)用程序時(shí)已經(jīng)了解了模式時(shí),它可以很好地工作。

第一種方法代碼實(shí)例java版本實(shí)現(xiàn):

    數(shù)據(jù)準(zhǔn)備studentDatatxt

1001,20,zhangsan1002,17,lisi1003,24,wangwu1004,16,zhaogang

    本地模式代碼實(shí)現(xiàn):

package com.unicom.ljs.spark220.study;
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function;import org.apache.spark.api.java.function.VoidFunction;import org.apache.spark.sql.Dataset;import org.apache.spark.sql.Row;import org.apache.spark.sql.SQLContext;
/** * @author: Created By lujisen * @company ChinaUnicom Software JiNan * @date: 2020-01-20 08:58 * @version: v1.0 * @description: com.unicom.ljs.spark220.study */public class RDD2DataFrameReflect {    public static void main(String[] args) {        SparkConf sparkConf = new SparkConf().setMaster("local[*]").setAppName("RDD2DataFrameReflect");        JavaSparkContext sc = new JavaSparkContext(sparkConf);        SQLContext sqlContext=new SQLContext(sc);
       JavaRDD<String> lines = sc.textFile("C:\\Users\\Administrator\\Desktop\\studentData.txt");        JavaRDD<Student2> studentRDD = lines.map(new Function<String, Student2>() {            @Override            public Student2 call(String line) throws Exception {                String[] split = line.split(",");                Student2 student=new Student2();                student.setId(Integer.valueOf(split[0]));                student.setAge(Integer.valueOf(split[1]));                student.setName(split[2]);                return student;            }        });        //使用反射方式將RDD轉(zhuǎn)換成dataFrame        //將Student.calss傳遞進(jìn)去,其實(shí)就是利用反射的方式來(lái)創(chuàng)建DataFrame        Dataset<Row> dataFrame = sqlContext.createDataFrame(studentRDD, Student2.class);        //拿到DataFrame之后將其注冊(cè)為臨時(shí)表,然后針對(duì)其中的數(shù)據(jù)執(zhí)行SQL語(yǔ)句        dataFrame.registerTempTable("studentTable");
       //針對(duì)student臨時(shí)表,執(zhí)行sql語(yǔ)句查詢(xún)年齡小于18歲的學(xué)生,        /*DataFrame rowDF */        Dataset<Row> dataset = sqlContext.sql("select * from  studentTable where age < 18");        JavaRDD<Row> rowJavaRDD = dataset.toJavaRDD();        JavaRDD<Student2> ageRDD = rowJavaRDD.map(new Function<Row, Student2>() {            @Override            public Student2 call(Row row) throws Exception {                Student2 student = new Student2();                student.setId(row.getInt(0));                student.setAge(row.getInt(1));                student.setName(row.getString(2));
               return student;            }        });        ageRDD.foreach(new VoidFunction<Student2>() {            @Override            public void call(Student2 student) throws Exception {                System.out.println(student.toString());            }        });    }}

Student2類(lèi):

package com.unicom.ljs.spark220.study;
import java.io.Serializable;
/** * @author: Created By lujisen * @company ChinaUnicom Software JiNan * @date: 2020-01-20 08:57 * @version: v1.0 * @description: com.unicom.ljs.spark220.study */public class Student2 implements Serializable {    int  id;    int  age;    String name;
   public int getId() {        return id;    }
   public void setId(int id) {        this.id = id;    }
   public int getAge() {        return age;    }
   public void setAge(int age) {        this.age = age;    }
   public String getName() {        return name;    }
   public void setName(String name) {        this.name = name;    }
   @Override    public String toString() {        return "Student2{" +                "id=" + id +                ", age=" + age +                ", name='" + name + '\'' +                '}';    }}

pom.xml關(guān)鍵依賴(lài):

<spark.version>2.2.0</spark.version>
<scala.version>2.11.8</scala.version>
<dependency>    <groupId>org.apache.spark</groupId>    <artifactId>spark-sql_2.11</artifactId>    <version>${spark.version}</version></dependency><dependency>    <groupId>org.apache.spark</groupId>    <artifactId>spark-core_2.11</artifactId>    <version>${spark.version}</version></dependency>

看完上述內(nèi)容,你們掌握Spark2.2.0中RDD轉(zhuǎn)DataFrame的方式是怎樣的的方法了嗎?如果還想學(xué)到更多技能或想了解更多相關(guān)內(nèi)容,歡迎關(guān)注億速云行業(yè)資訊頻道,感謝各位的閱讀!

向AI問(wèn)一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀(guān)點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI