溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

hadoop2.7.3+HA+YARN+zookeeper高可用集群如何部署

發(fā)布時間:2021-12-09 15:25:36 來源:億速云 閱讀:159 作者:iii 欄目:云計算

本篇內容介紹了“hadoop2.7.3+HA+YARN+zookeeper高可用集群如何部署”的有關知識,在實際案例的操作過程中,不少人都會遇到這樣的困境,接下來就讓小編帶領大家學習一下如何處理這些情況吧!希望大家仔細閱讀,能夠學有所成!

一、安裝版本:

JDK1.8.0_111-b14
hadoophadoop-2.7.3
zookeeperzookeeper-3.5.2

二、安裝步驟:  

    JDK的安裝和集群的依賴環(huán)境配置不再敘述

1、hadoop配置

    hadoop配置主要涉及hdfs-site.xml,core-site.xml,mapred-site.xml,yarn-site.xml四個文件。以下詳細介紹每個文件的配置。

  1. core-site.xml的配置
    <configuration>
    <property>
          <name>fs.defaultFS</name>
          <value>hdfs://cluster1</value>
          <description>HDFS namenode的邏輯名稱,也就是namenode HA,此值要對應hdfs-site.xml里的dfs.nameservices</description>
    </property>
    <property>
        <name>hadoop.tmp.dir</name>
        <value>/usr/hadoop/tmp</value>
        <description>hdfs中namenode和datanode的數(shù)據(jù)默認放置路徑,也可以在hdfs-site.xml中分別指定</description>
    </property>
    <property>
            <name>ha.zookeeper.quorum</name>
            <value>master:2181,salve1:2181,salve2:2181</value>
            <description>zookeeper集群的地址和端口,zookeeper集群的節(jié)點數(shù)必須為奇數(shù)</description>
    </property>
    </configuration>


  2. hdfs-site.xml的配置(重點配置)
    <configuration>
    <property>
        <name>dfs.name.dir</name>
        <value>/usr/hadoop/hdfs/name</value>
        <description>namenode的數(shù)據(jù)放置目錄</description>
    </property>
    <property>
        <name>dfs.data.dir</name>
        <value>/usr/hadoop/hdfs/data</value>
        <description>datanode的數(shù)據(jù)放置目錄</description>
    </property>
    <property>
        <name>dfs.replication</name>
        <value>4</value>
        <description>數(shù)據(jù)塊的備份數(shù),默認是3</description>
    </property>
    <property>
            <name>dfs.nameservices</name>
            <value>cluster1</value>
            <description>HDFS namenode的邏輯名稱,也就是namenode HA</description>
    </property>
    <property>
            <name>dfs.ha.namenodes.cluster1</name>
            <value>ns1,ns2</value>
            <description>nameservices對應的namenode邏輯名</description>
    </property>
    <property>
            <name>dfs.namenode.rpc-address.cluster1.ns1</name>
            <value>master:9000</value>
            <description>指定namenode(ns1)的rpc地址和端口</description>
    </property>
    <property>
            <name>dfs.namenode.http-address.cluster1.ns1</name>
            <value>master:50070</value>
            <description>指定namenode(ns1)的web地址和端口</description>
    </property>
    <property>
            <name>dfs.namenode.rpc-address.cluster1.ns2</name>
            <value>salve1:9000</value>
            <description>指定namenode(ns2)的rpc地址和端口</description>
    </property>
    <property>
            <name>dfs.namenode.http-address.cluster1.ns2</name>
            <value>salve1:50070</value>
            <description>指定namenode(ns2)的web地址和端口</description>
    </property>
    <property>
            <name>dfs.namenode.shared.edits.dir</name>
            <value>qjournal://master:8485;salve1:8485;salve2:8485/cluster1 </value>
            <description>這是NameNode讀寫JNs組的uri,active NN 將 edit log 寫入這些JournalNode,而 standby NameNode 讀取這些 edit log,并作用在內存中的目錄樹中</description>
    </property>
    <property>
            <name>dfs.journalnode.edits.dir</name>
            <value>/usr/hadoop/journal</value>
            <description>ournalNode 所在節(jié)點上的一個目錄,用于存放 editlog 和其他狀態(tài)信息。</description>
    </property>
    <property>  
               <name>dfs.ha.automatic-failover.enabled</name>  
               <value>true</value>
               <description>啟動自動failover。自動failover依賴于zookeeper集群和ZKFailoverController(ZKFC),后者是一個zookeeper客戶端,用來監(jiān)控NN的狀態(tài)信息。每個運行NN的節(jié)點必須要運行一個zkfc</description>  
    </property>
    <property>
            <name>dfs.client.failover.proxy.provider.cluster1</name>
            <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
            <description>配置HDFS客戶端連接到Active NameNode的一個java類</description>
    </property>
    <property>
            <name>dfs.ha.fencing.methods</name>
            <value>sshfence</value>
            <description>解決HA集群腦裂問題(即出現(xiàn)兩個 master 同時對外提供服務,導致系統(tǒng)處于不一致狀態(tài))。在 HDFS HA中,JournalNode 只允許一個 NameNode 寫數(shù)據(jù),不會出現(xiàn)兩個 active NameNode 的問題,
    但是,當主備切換時,之前的 active NameNode 可能仍在處理客戶端的 RPC 請求,為此,需要增加隔離機制(fencing)將之前的 active NameNode 殺死。常用的fence方法是sshfence,要指定ssh通訊使用的密鑰dfs.ha.fencing.ssh.private-key-files和連接超時時間</description>
    </property>
    <property>
            <name>dfs.ha.fencing.ssh.private-key-files</name>
            <value>/home/hadoop/.ssh/id_rsa</value>
            <description>ssh通訊使用的密鑰</description>        
    </property>
    <property>
            <name>dfs.ha.fencing.ssh.connect-timeout</name>
            <value>30000</value>
            <description>連接超時時間</description> 
    </property>
    </configuration>


     

  3. mapred-site.xml的配置
    <configuration>
    <property>
            <name>mapreduce.framework.name</name>
            <value>yarn</value>
            <description>指定運行mapreduce的環(huán)境是yarn,與hadoop1截然不同的地方</description>
    </property>
    <property>
            <name>mapreduce.jobhistory.address</name>
            <value>master:10020</value>
             <description>MR JobHistory Server管理的日志的存放位置</description>
    </property>
    <property>
            <name>mapreduce.jobhistory.webapp.address</name>
            <value>master:19888</value>
            <description>查看歷史服務器已經運行完的Mapreduce作業(yè)記錄的web地址,需要啟動該服務才行</description>
    </property>
    <property>
       <name>mapreduce.jobhistory.done-dir</name>
       <value>/data/hadoop/done</value>
       <description>MR JobHistory Server管理的日志的存放位置,默認:/mr-history/done</description>
    </property>
    <property>
       <name>mapreduce.jobhistory.intermediate-done-dir</name>
       <value>hdfs://mycluster-pha/mapred/tmp</value>
       <description>MapReduce作業(yè)產生的日志存放位置,默認值:/mr-history/tmp</description>
    </property>
    </configuration>


     

  4. yarn-site.xml的配置
<configuration>
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
        <description>默認</description>
    </property>
         <property>
        <name>yarn.nodemanager.auxservices.mapreduce.shuffle.class</name>
        <value>org.apache.hadoop.mapred.ShuffleHandler</value>
    </property>
    <property>
        <name>yarn.resourcemanager.address</name>
        <value>master:8032</value>
    </property>
    <property>
        <name>yarn.resourcemanager.scheduler.address</name>
        <value>master:8030</value>
    </property>
    <property>
        <name>yarn.resourcemanager.resource-tracker.address</name>
        <value>master:8031</value>
    </property>
    <property>
        <name>yarn.resourcemanager.admin.address</name>
        <value>master:8033</value>
    </property>
    <property>
        <name>yarn.resourcemanager.webapp.address</name>
        <value>master:8088</value>
    </property>
<property>
    <name>yarn.nodemanager.resource.memory-mb</name>
    <value>1024</value>
    <description>該值配置小于1024時,NM是無法啟動的!會報錯:
NodeManager from  slavenode2 doesn't satisfy minimum allocations, Sending SHUTDOWN signal to the NodeManager.</description>
  </property>
</configuration>

2.zookeeper配置

    zookeeper的配置主要是zoo.cfg和myid兩個文件

  1. conf/zoo.cfg配置:先將zoo_sample.cfg改成zoo.cfg
    cp  zoo_sample.cfg  zoo.cfg


  2. vi zoo.cfg
    dataDir:數(shù)據(jù)的放置路徑
    
    dataLogDir:log的放置路徑


    initLimit=10
    syncLimit=5
    clientPort=2181
    tickTime=2000
    dataDir=/usr/zookeeper/tmp/data
    dataLogDir=/usr/zookeeper/tmp/log
    server.1=master:2888:3888
    server.2=slave1:2888:3888
    server.3=slave2:2888:3888


  3. 在[master,slave1,slave2]節(jié)點的dataDir目錄新建文件myid
vi myid

    master節(jié)點編輯:1

    slave1節(jié)點編輯:2

    slave2節(jié)點編輯:3

    如下:

[hadoop@master data]$ vi myid 

1

三、啟動集群

 1.zookeeper集群啟動

    1.啟動zookeeper集群,在三個節(jié)點全部啟動
bin/zkServer.sh start
    2.查看集群zookeeper狀態(tài):zkServer.sh status,一個learer兩個follower。
[hadoop@master hadoop-2.7.3]$ zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /usr/local/zookeeper-3.5.2-alpha/bin/../conf/zoo.cfg
Client port found: 2181. Client address: localhost.
Mode: follower
[hadoop@slave1 root]$ zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /usr/local/zookeeper-3.5.2-alpha/bin/../conf/zoo.cfg
Client port found: 2181. Client address: localhost.
Mode: leader
[hadoop@slave2 root]$ zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /usr/local/zookeeper-3.5.2-alpha/bin/../conf/zoo.cfg
Client port found: 2181. Client address: localhost.
Mode: follower
    3.驗證zookeeper(非必須): 執(zhí)行zkCli.sh
[hadoop@slave1 root]$ zkCli.sh
Connecting to localhost:2181
2016-12-18 02:05:03,115 [myid:] - INFO  [main:Environment@109] - Client environment:zookeeper.version=3.5.2-alpha-1750793, built on 06/30/2016 13:15 GMT
2016-12-18 02:05:03,118 [myid:] - INFO  [main:Environment@109] - Client environment:host.name=salve1
2016-12-18 02:05:03,118 [myid:] - INFO  [main:Environment@109] - Client environment:java.version=1.8.0_111
2016-12-18 02:05:03,120 [myid:] - INFO  [main:Environment@109] - Client environment:java.vendor=Oracle Corporation
2016-12-18 02:05:03,120 [myid:] - INFO  [main:Environment@109] - Client environment:java.home=/usr/local/jdk1.8.0_111/jre
2016-12-18 02:05:03,120 [myid:] - INFO  [main:Environment@109] - Client environment:java.class.path=/usr/local/zookeeper-3.5.2-alpha/bin/../build/classes:/usr/local/zookeeper-3.5.2-alpha/bin/../build/lib/*.jar:/usr/local/zookeeper-3.5.2-alpha/bin/../lib/slf4j-log4j12-1.7.5.jar:/usr/local/zookeeper-3.5.2-alpha/bin/../lib/slf4j-api-1.7.5.jar:/usr/local/zookeeper-3.5.2-alpha/bin/../lib/servlet-api-2.5-20081211.jar:/usr/local/zookeeper-3.5.2-alpha/bin/../lib/netty-3.10.5.Final.jar:/usr/local/zookeeper-3.5.2-alpha/bin/../lib/log4j-1.2.17.jar:/usr/local/zookeeper-3.5.2-alpha/bin/../lib/jline-2.11.jar:/usr/local/zookeeper-3.5.2-alpha/bin/../lib/jetty-util-6.1.26.jar:/usr/local/zookeeper-3.5.2-alpha/bin/../lib/jetty-6.1.26.jar:/usr/local/zookeeper-3.5.2-alpha/bin/../lib/javacc.jar:/usr/local/zookeeper-3.5.2-alpha/bin/../lib/jackson-mapper-asl-1.9.11.jar:/usr/local/zookeeper-3.5.2-alpha/bin/../lib/jackson-core-asl-1.9.11.jar:/usr/local/zookeeper-3.5.2-alpha/bin/../lib/commons-cli-1.2.jar:/usr/local/zookeeper-3.5.2-alpha/bin/../zookeeper-3.5.2-alpha.jar:/usr/local/zookeeper-3.5.2-alpha/bin/../src/java/lib/*.jar:/usr/local/zookeeper-3.5.2-alpha/bin/../conf:.:/usr/local/jdk1.8.0_111/lib/dt.jar:/usr/local/jdk1.8.0_111/lib/tools.jar:/usr/local/zookeeper-3.5.2-alpha/bin:/usr/local/hadoop-2.7.3/bin
2016-12-18 02:05:03,120 [myid:] - INFO  [main:Environment@109] - Client environment:java.library.path=/usr/java/packages/lib/amd64:/usr/lib64:/lib64:/lib:/usr/lib
2016-12-18 02:05:03,121 [myid:] - INFO  [main:Environment@109] - Client environment:java.io.tmpdir=/tmp
2016-12-18 02:05:03,121 [myid:] - INFO  [main:Environment@109] - Client environment:java.compiler=<NA>
2016-12-18 02:05:03,121 [myid:] - INFO  [main:Environment@109] - Client environment:os.name=Linux
2016-12-18 02:05:03,121 [myid:] - INFO  [main:Environment@109] - Client environment:os.arch=amd64
2016-12-18 02:05:03,121 [myid:] - INFO  [main:Environment@109] - Client environment:os.version=3.10.0-327.22.2.el7.x86_64
2016-12-18 02:05:03,121 [myid:] - INFO  [main:Environment@109] - Client environment:user.name=hadoop
2016-12-18 02:05:03,121 [myid:] - INFO  [main:Environment@109] - Client environment:user.home=/home/hadoop
2016-12-18 02:05:03,121 [myid:] - INFO  [main:Environment@109] - Client environment:user.dir=/tmp/hsperfdata_hadoop
2016-12-18 02:05:03,121 [myid:] - INFO  [main:Environment@109] - Client environment:os.memory.free=52MB
2016-12-18 02:05:03,123 [myid:] - INFO  [main:Environment@109] - Client environment:os.memory.max=228MB
2016-12-18 02:05:03,123 [myid:] - INFO  [main:Environment@109] - Client environment:os.memory.total=57MB
2016-12-18 02:05:03,146 [myid:] - INFO  [main:ZooKeeper@855] - Initiating client connection, connectString=localhost:2181 sessionTimeout=30000 watcher=org.apache.zookeeper.ZooKeeperMain$MyWatcher@593634ad
Welcome to ZooKeeper!
2016-12-18 02:05:03,171 [myid:localhost:2181] - INFO  [main-SendThread(localhost:2181):ClientCnxn$SendThread@1113] - Opening socket connection to server localhost/127.0.0.1:2181. Will not attempt to authenticate using SASL (unknown error)
JLine support is enabled
2016-12-18 02:05:03,243 [myid:localhost:2181] - INFO  [main-SendThread(localhost:2181):ClientCnxn$SendThread@948] - Socket connection established, initiating session, client: /127.0.0.1:56184, server: localhost/127.0.0.1:2181
2016-12-18 02:05:03,252 [myid:localhost:2181] - INFO  [main-SendThread(localhost:2181):ClientCnxn$SendThread@1381] - Session establishment complete on server localhost/127.0.0.1:2181, sessionid = 0x200220f5fe30060, negotiated timeout = 30000

WATCHER::

WatchedEvent state:SyncConnected type:None path:null
[zk: localhost:2181(CONNECTED) 0]

2.hadoop集群啟動

    1.第一次配置啟動

        1.1在三個節(jié)點上啟動Journalnode deamons,然后jps,出現(xiàn)JournalNode進程。

sbin/./hadoop-daemon.sh start journalnode
jps

JournalNode

        1.2格式化master上的namenode(任意一個),然后啟動該節(jié)點的namenode。

bin/hdfs namenode -format
sbin/hadoop-daemon.sh start namenode

        1.3在另一個namenode節(jié)點slave1上同步master上的元數(shù)據(jù)信息

bin/hdfs namenode -bootstrapStandby

         1.4停止hdfs上的所有服務

sbin/stop-dfs.sh

        1.5初始化zkfc

bin/hdfs zkfc -formatZK

        1.6啟動hdfs

sbin/start-dfs.sh

        1.7啟動yarn

sbin/start-yarn.sh
    2.非第一次配置啟動

        2.1直接啟動hdfs和yarn即可,namenode、datanode、journalnode、DFSZKFailoverController都會自動啟動。

sbin/start-dfs.sh

        2.2啟動yarn

sbin/start-yarn.sh

四、查看各節(jié)點的進程

    4.1master

[hadoop@master hadoop-2.7.3]$ jps
26544 QuorumPeerMain
25509 JournalNode
25704 DFSZKFailoverController
26360 Jps
25306 DataNode
25195 NameNode
25886 ResourceManager
25999 NodeManager

    4.2slave1

[hadoop@slave1 root]$ jps
2289 DFSZKFailoverController
9400 QuorumPeerMain
2601 Jps
2060 DataNode
2413 NodeManager
2159 JournalNode
1983 NameNode

    4.3slave2

[hadoop@slave2 root]$ jps
11984 DataNode
12370 Jps
2514 QuorumPeerMain
12083 JournalNode
12188 NodeManager

“hadoop2.7.3+HA+YARN+zookeeper高可用集群如何部署”的內容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業(yè)相關的知識可以關注億速云網站,小編將為大家輸出更多高質量的實用文章!

向AI問一下細節(jié)

免責聲明:本站發(fā)布的內容(圖片、視頻和文字)以原創(chuàng)、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關證據(jù),一經查實,將立刻刪除涉嫌侵權內容。

AI