溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶(hù)服務(wù)條款》

SimpleKMeansClustering運(yùn)行報(bào)錯(cuò)怎么解決

發(fā)布時(shí)間:2022-03-25 16:05:26 來(lái)源:億速云 閱讀:169 作者:iii 欄目:云計(jì)算

這篇文章主要介紹“ SimpleKMeansClustering運(yùn)行報(bào)錯(cuò)怎么解決”的相關(guān)知識(shí),小編通過(guò)實(shí)際案例向大家展示操作過(guò)程,操作方法簡(jiǎn)單快捷,實(shí)用性強(qiáng),希望這篇“ SimpleKMeansClustering運(yùn)行報(bào)錯(cuò)怎么解決”文章能幫助大家解決問(wèn)題。

環(huán)境列表

軟件明稱(chēng)版本

hadoop

0.20.2

mahout

0.4

eclipse

Kepler Service Release 1


報(bào)錯(cuò)代碼:

ClassNotFoundException: org.apache.mahout.math.function.IntDoubleProcedure

解決辦法:

開(kāi)始的主觀認(rèn)為IntDoubleProcedure在mahout-math-0.4.jar包里,可是經(jīng)測(cè)試確實(shí)沒(méi)有在這個(gè)包里面.

后來(lái)發(fā)現(xiàn)IntDoubleProcedure在mahout-collections-1.0.jar里面,增加mahout-collections-1.0.jar這個(gè)包,就不會(huì)報(bào)出上面的錯(cuò)誤了.

文件內(nèi)容:

package com.mahout.cluster;

import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;
import org.apache.mahout.clustering.WeightedVectorWritable;
import org.apache.mahout.clustering.kmeans.Cluster;
import org.apache.mahout.clustering.kmeans.KMeansDriver;
import org.apache.mahout.common.distance.EuclideanDistanceMeasure;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.VectorWritable;

public class SimpleKMeansClustering {
  public static final double[][] points = { {1, 1}, {2, 1}, {1, 2},
                                           {2, 2}, {3, 3}, {8, 8},
                                           {9, 8}, {8, 9}, {9, 9}};
  
  public static void writePointsToFile(List<Vector> points,
                                       String fileName,
                                       FileSystem fs,
                                       Configuration conf) throws IOException {
    Path path = new Path(fileName);
    SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf,
        path, LongWritable.class, VectorWritable.class);
    long recNum = 0;
    VectorWritable vec = new VectorWritable();
    for (Vector point : points) {
      vec.set(point);
      writer.append(new LongWritable(recNum++), vec);
    }
    writer.close();
  }
  
  public static List<Vector> getPoints(double[][] raw) {
    List<Vector> points = new ArrayList<Vector>();
    for (int i = 0; i < raw.length; i++) {
      double[] fr = raw[i];
      Vector vec = new RandomAccessSparseVector(fr.length);
      vec.assign(fr);
      points.add(vec);
    }
    return points;
  }
  
  public static void main(String args[]) throws Exception {
    
    int k = 3;
    
    List<Vector> vectors = getPoints(points);
    
    File testData = new File("testdata");
    if (!testData.exists()) {
      testData.mkdir();
    }
    testData = new File("testdata/points");
    if (!testData.exists()) {
      testData.mkdir();
    }
    
    Configuration conf = new Configuration();
    FileSystem fs = FileSystem.get(conf);
    writePointsToFile(vectors, "testdata/points/file1", fs, conf);
    
    Path path = new Path("testdata/clusters/part-00000");
    SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf,
        path, Text.class, Cluster.class);
    
    for (int i = 0; i < k; i++) {
      Vector vec = vectors.get(i);
      Cluster cluster = new Cluster(vec, i, new EuclideanDistanceMeasure());
      writer.append(new Text(cluster.getIdentifier()), cluster);
    }
    writer.close();
    
    KMeansDriver.run(conf, new Path("testdata/points"), new Path("testdata/clusters"),
      new Path("output"), new EuclideanDistanceMeasure(), 0.001, 10,
      true, false);
    
    SequenceFile.Reader reader = new SequenceFile.Reader(fs,
        new Path("output/" + Cluster.CLUSTERED_POINTS_DIR
                 + "/part-m-00000"), conf);
    
    IntWritable key = new IntWritable();
    WeightedVectorWritable value = new WeightedVectorWritable();
    while (reader.next(key, value)) {
      System.out.println(value.toString() + " belongs to cluster "
                         + key.toString());
    }
    reader.close();
  }
  
}

關(guān)于“ SimpleKMeansClustering運(yùn)行報(bào)錯(cuò)怎么解決”的內(nèi)容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業(yè)相關(guān)的知識(shí),可以關(guān)注億速云行業(yè)資訊頻道,小編每天都會(huì)為大家更新不同的知識(shí)點(diǎn)。

向AI問(wèn)一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI