您好,登錄后才能下訂單哦!
本篇內(nèi)容主要講解“12306的架構有哪些優(yōu)點”,感興趣的朋友不妨來看看。本文介紹的方法操作簡單快捷,實用性強。下面就讓小編來帶大家學習“12306的架構有哪些優(yōu)點”吧!
如何在 100 萬人同時搶 1 萬張火車票時,系統(tǒng)提供正常、穩(wěn)定的服務。
Github代碼地址:
https://github.com/GuoZhaoran/spikeSystem
高并發(fā)的系統(tǒng)架構都會采用分布式集群部署,服務上層有著層層負載均衡,并提供各種容災手段(雙火機房、節(jié)點容錯、服務器災備等)保證系統(tǒng)的高可用,流量也會根據(jù)不同的負載能力和配置策略均衡到不同的服務器上。
下邊是一個簡單的示意圖:
上圖中描述了用戶請求到服務器經(jīng)歷了三層的負載均衡,下邊分別簡單介紹一下這三種負載均衡。
①OSPF(開放式最短鏈路優(yōu)先)是一個內(nèi)部網(wǎng)關協(xié)議(Interior Gateway Protocol,簡稱 IGP)
OSPF 通過路由器之間通告網(wǎng)絡接口的狀態(tài)來建立鏈路狀態(tài)數(shù)據(jù)庫,生成最短路徑樹,OSPF 會自動計算路由接口上的 Cost 值。
但也可以通過手工指定該接口的 Cost 值,手工指定的優(yōu)先于自動計算的值。
OSPF 計算的 Cost,同樣是和接口帶寬成反比,帶寬越高,Cost 值越小。
到達目標相同 Cost 值的路徑,可以執(zhí)行負載均衡,最多 6 條鏈路同時執(zhí)行負載均衡。
②LVS (Linux Virtual Server)
它是一種集群(Cluster)技術,采用 IP 負載均衡技術和基于內(nèi)容請求分發(fā)技術。
調(diào)度器具有很好的吞吐率,將請求均衡地轉(zhuǎn)移到不同的服務器上執(zhí)行,且調(diào)度器自動屏蔽掉服務器的故障,從而將一組服務器構成一個高性能的、高可用的虛擬服務器。
③Nginx
想必大家都很熟悉了,是一款非常高性能的 HTTP 代理/反向代理服務器,服務開發(fā)中也經(jīng)常使用它來做負載均衡。
Nginx 實現(xiàn)負載均衡的方式主要有三種:
輪詢
加權輪詢
IP Hash 輪詢
下面我們就針對 Nginx 的加權輪詢做專門的配置和測試。
Nginx 加權輪詢的演示
Nginx 實現(xiàn)負載均衡通過 Upstream 模塊實現(xiàn),其中加權輪詢的配置是可以給相關的服務加上一個權重值,配置的時候可能根據(jù)服務器的性能、負載能力設置相應的負載。
下面是一個加權輪詢負載的配置,我將在本地的監(jiān)聽 3001-3004 端口,分別配置 1,2,3,4 的權重:
#配置負載均衡 upstream load_rule { server 127.0.0.1:3001 weight=1; server 127.0.0.1:3002 weight=2; server 127.0.0.1:3003 weight=3; server 127.0.0.1:3004 weight=4; } ... server { listen 80; server_name load_balance.com www.load_balance.com; location / { proxy_pass http://load_rule; } }
我在本地 /etc/hosts 目錄下配置了 www.load_balance.com 的虛擬域名地址。
接下來使用 Go 語言開啟四個 HTTP 端口監(jiān)聽服務,下面是監(jiān)聽在 3001 端口的 Go 程序,其他幾個只需要修改端口即可:
package mainimport ( "net/http" "os" "strings")func main() { http.HandleFunc("/buy/ticket", handleReq) http.ListenAndServe(":3001", nil) }//處理請求函數(shù),根據(jù)請求將響應結果信息寫入日志func handleReq(w http.ResponseWriter, r *http.Request) { failedMsg := "handle in port:" writeLog(failedMsg, "./stat.log") }//寫入日志func writeLog(msg string, logPath string) { fd, _ := os.OpenFile(logPath, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0644) defer fd.Close() content := strings.Join([]string{msg, "rn"}, "3001") buf := []byte(content) fd.Write(buf) }
我將請求的端口日志信息寫到了 ./stat.log 文件當中,然后使用 AB 壓測工具做壓測:
ab -n 1000 -c 100 http://www.load_balance.com/buy/ticket
統(tǒng)計日志中的結果,3001-3004 端口分別得到了 100、200、300、400 的請求量。
這和我在 Nginx 中配置的權重占比很好的吻合在了一起,并且負載后的流量非常的均勻、隨機。
回到我們最初提到的問題中來:火車票秒殺系統(tǒng)如何在高并發(fā)情況下提供正常、穩(wěn)定的服務呢?
從上面的介紹我們知道用戶秒殺流量通過層層的負載均衡,均勻到了不同的服務器上,即使如此,集群中的單機所承受的 QPS 也是非常高的。
如何將單機性能優(yōu)化到極致呢?
要解決這個問題,我們就要想明白一件事:通常訂票系統(tǒng)要處理生成訂單、減扣庫存、用戶支付這三個基本的階段。
我們系統(tǒng)要做的事情是要保證火車票訂單不超賣、不少賣,每張售賣的車票都必須支付才有效,還要保證系統(tǒng)承受極高的并發(fā)。
這三個階段的先后順序該怎么分配才更加合理呢?我們來分析一下:
下單減庫存
如果等待用戶支付了訂單在減庫存,第一感覺就是不會少賣。
但是這是并發(fā)架構的大忌,因為在極限并發(fā)情況下,用戶可能會創(chuàng)建很多訂單。
當庫存減為零的時候很多用戶發(fā)現(xiàn)搶到的訂單支付不了了,這也就是所謂的“超賣”。也不能避免并發(fā)操作數(shù)據(jù)庫磁盤 IO。
預扣庫存
為了保證扣庫存和生成訂單的原子性,需要采用事務處理,然后取庫存判斷、減庫存,最后提交事務,整個流程有很多 IO,對數(shù)據(jù)庫的操作又是阻塞的。
這種方式根本不適合高并發(fā)的秒殺系統(tǒng)。接下來我們對單機扣庫存的方案做優(yōu)化:本地扣庫存。
我們把一定的庫存量分配到本地機器,直接在內(nèi)存中減庫存,然后按照之前的邏輯異步創(chuàng)建訂單。
改進過之后的單機系統(tǒng)是這樣的:
問題接踵而至,在高并發(fā)情況下,現(xiàn)在我們還無法保證系統(tǒng)的高可用,假如這 100 臺服務器上有兩三臺機器因為扛不住并發(fā)的流量或者其他的原因宕機了。
那么這些服務器上的訂單就賣不出去了,這就造成了訂單的少賣。
要解決這個問題,我們需要對總訂單量做統(tǒng)一的管理,這就是接下來的容錯方案。
服務器不僅要在本地減庫存,另外要遠程統(tǒng)一減庫存。
有了遠程統(tǒng)一減庫存的操作,我們就可以根據(jù)機器負載情況,為每臺機器分配一些多余的“Buffer 庫存”用來防止機器中有機器宕機的情況。
我們結合下面架構圖具體分析一下:
我們采用 Redis 存儲統(tǒng)一庫存,因為 Redis 的性能非常高,號稱單機 QPS 能抗 10W 的并發(fā)。
在本地減庫存以后,如果本地有訂單,我們再去請求 Redis 遠程減庫存,本地減庫存和遠程減庫存都成功了,才返回給用戶搶票成功的提示,這樣也能有效的保證訂單不會超賣。
當機器中有機器宕機時,因為每個機器上有預留的 Buffer 余票,所以宕機機器上的余票依然能夠在其他機器上得到彌補,保證了不少賣。
Buffer 余票設置多少合適呢,理論上 Buffer 設置的越多,系統(tǒng)容忍宕機的機器數(shù)量就越多,但是 Buffer 設置的太大也會對 Redis 造成一定的影響。
雖然 Redis 內(nèi)存數(shù)據(jù)庫抗并發(fā)能力非常高,請求依然會走一次網(wǎng)絡 IO,其實搶票過程中對 Redis 的請求次數(shù)是本地庫存和 Buffer 庫存的總量。
因為當本地庫存不足時,系統(tǒng)直接返回用戶“已售罄”的信息提示,就不會再走統(tǒng)一扣庫存的邏輯。
這在一定程度上也避免了巨大的網(wǎng)絡請求量把 Redis 壓跨,所以 Buffer 值設置多少,需要架構師對系統(tǒng)的負載能力做認真的考量。
代碼演示:
Go 語言原生為并發(fā)設計,我采用 Go 語言給大家演示一下單機搶票的具體流程。
初始化工作
Go 包中的 Init 函數(shù)先于 Main 函數(shù)執(zhí)行,在這個階段主要做一些準備性工作。
我們系統(tǒng)需要做的準備工作有:初始化本地庫存、初始化遠程 Redis 存儲統(tǒng)一庫存的 Hash 鍵值、初始化 Redis 連接池。
另外還需要初始化一個大小為 1 的 Int 類型 Chan,目的是實現(xiàn)分布式鎖的功能。
也可以直接使用讀寫鎖或者使用 Redis 等其他的方式避免資源競爭,但使用 Channel 更加高效,這就是 Go 語言的哲學:不要通過共享內(nèi)存來通信,而要通過通信來共享內(nèi)存。
Redis 庫使用的是 Redigo,下面是代碼實現(xiàn):
...//localSpike包結構體定義package localSpiketype LocalSpike struct { LocalInStock int64 LocalSalesVolume int64} ...//remoteSpike對hash結構的定義和redis連接池package remoteSpike//遠程訂單存儲健值type RemoteSpikeKeys struct { SpikeOrderHashKey string //redis中秒殺訂單hash結構key TotalInventoryKey string //hash結構中總訂單庫存key QuantityOfOrderKey string //hash結構中已有訂單數(shù)量key}//初始化redis連接池func NewPool() *redis.Pool { return &redis.Pool{ MaxIdle: 10000, MaxActive: 12000, // max number of connections Dial: func() (redis.Conn, error) { c, err := redis.Dial("tcp", ":6379") if err != nil { panic(err.Error()) } return c, err }, } } ...func init() { localSpike = localSpike2.LocalSpike{ LocalInStock: 150, LocalSalesVolume: 0, } remoteSpike = remoteSpike2.RemoteSpikeKeys{ SpikeOrderHashKey: "ticket_hash_key", TotalInventoryKey: "ticket_total_nums", QuantityOfOrderKey: "ticket_sold_nums", } redisPool = remoteSpike2.NewPool() done = make(chan int, 1) done <- 1}
本地扣庫存和統(tǒng)一扣庫存
本地扣庫存邏輯非常簡單,用戶請求過來,添加銷量,然后對比銷量是否大于本地庫存,返回 Bool 值:
package localSpike//本地扣庫存,返回bool值func (spike *LocalSpike) LocalDeductionStock() bool{ spike.LocalSalesVolume = spike.LocalSalesVolume + 1 return spike.LocalSalesVolume < spike.LocalInStock }
注意這里對共享數(shù)據(jù) LocalSalesVolume 的操作是要使用鎖來實現(xiàn)的,但是因為本地扣庫存和統(tǒng)一扣庫存是一個原子性操作,所以在最上層使用 Channel 來實現(xiàn),這塊后邊會講。
統(tǒng)一扣庫存操作 Redis,因為 Redis 是單線程的,而我們要實現(xiàn)從中取數(shù)據(jù),寫數(shù)據(jù)并計算一些列步驟,我們要配合 Lua 腳本打包命令,保證操作的原子性:
package remoteSpike ......const LuaScript = ` local ticket_key = KEYS[1] local ticket_total_key = ARGV[1] local ticket_sold_key = ARGV[2] local ticket_total_nums = tonumber(redis.call('HGET', ticket_key, ticket_total_key)) local ticket_sold_nums = tonumber(redis.call('HGET', ticket_key, ticket_sold_key)) -- 查看是否還有余票,增加訂單數(shù)量,返回結果值 if(ticket_total_nums >= ticket_sold_nums) then return redis.call('HINCRBY', ticket_key, ticket_sold_key, 1) end return 0` //遠端統(tǒng)一扣庫存func (RemoteSpikeKeys *RemoteSpikeKeys) RemoteDeductionStock(conn redis.Conn) bool { lua := redis.NewScript(1, LuaScript) result, err := redis.Int(lua.Do(conn, RemoteSpikeKeys.SpikeOrderHashKey, RemoteSpikeKeys.TotalInventoryKey, RemoteSpikeKeys.QuantityOfOrderKey)) if err != nil { return false } return result != 0}
我們使用 Hash 結構存儲總庫存和總銷量的信息,用戶請求過來時,判斷總銷量是否大于庫存,然后返回相關的 Bool 值。
在啟動服務之前,我們需要初始化 Redis 的初始庫存信息:
hmset ticket_hash_key "ticket_total_nums" 10000 "ticket_sold_nums" 0
響應用戶信息
我們開啟一個 HTTP 服務,監(jiān)聽在一個端口上:
package main ...func main() { http.HandleFunc("/buy/ticket", handleReq) http.ListenAndServe(":3005", nil) }
上面我們做完了所有的初始化工作,接下來 handleReq 的邏輯非常清晰,判斷是否搶票成功,返回給用戶信息就可以了。
package main//處理請求函數(shù),根據(jù)請求將響應結果信息寫入日志func handleReq(w http.ResponseWriter, r *http.Request) { redisConn := redisPool.Get() LogMsg := "" <-done //全局讀寫鎖 if localSpike.LocalDeductionStock() && remoteSpike.RemoteDeductionStock(redisConn) { util.RespJson(w, 1, "搶票成功", nil) LogMsg = LogMsg + "result:1,localSales:" + strconv.FormatInt(localSpike.LocalSalesVolume, 10) } else { util.RespJson(w, -1, "已售罄", nil) LogMsg = LogMsg + "result:0,localSales:" + strconv.FormatInt(localSpike.LocalSalesVolume, 10) } done <- 1 //將搶票狀態(tài)寫入到log中 writeLog(LogMsg, "./stat.log") }func writeLog(msg string, logPath string) { fd, _ := os.OpenFile(logPath, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0644) defer fd.Close() content := strings.Join([]string{msg, "rn"}, "") buf := []byte(content) fd.Write(buf) }
前邊提到我們扣庫存時要考慮競態(tài)條件,我們這里是使用 Channel 避免并發(fā)的讀寫,保證了請求的高效順序執(zhí)行。
我們將接口的返回信息寫入到了 ./stat.log 文件方便做壓測統(tǒng)計。
單機服務壓測
開啟服務,我們使用 AB 壓測工具進行測試:
ab -n 10000 -c 100 http://127.0.0.1:3005/buy/ticket
下面是我本地低配 Mac 的壓測信息:
This is ApacheBench, Version 2.3 <$revision: 1826891="">Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/Licensed to The Apache Software Foundation, http://www.apache.org/Benchmarking 127.0.0.1 (be patient)Completed 1000 requestsCompleted 2000 requestsCompleted 3000 requestsCompleted 4000 requestsCompleted 5000 requestsCompleted 6000 requestsCompleted 7000 requestsCompleted 8000 requestsCompleted 9000 requestsCompleted 10000 requestsFinished 10000 requestsServer Software:Server Hostname: 127.0.0.1Server Port: 3005Document Path: /buy/ticketDocument Length: 29 bytesConcurrency Level: 100Time taken for tests: 2.339 secondsComplete requests: 10000Failed requests: 0Total transferred: 1370000 bytesHTML transferred: 290000 bytesRequests per second: 4275.96 [#/sec] (mean) Time per request: 23.387 [ms] (mean) Time per request: 0.234 [ms] (mean, across all concurrent requests) Transfer rate: 572.08 [Kbytes/sec] received Connection Times (ms) min mean[+/-sd] median max Connect: 0 8 14.7 6 223 Processing: 2 15 17.6 11 232 Waiting: 1 11 13.5 8 225 Total: 7 23 22.8 18 239 Percentage of the requests served within a certain time (ms) 50% 18 66% 24 75% 26 80% 28 90% 33 95% 39 98% 45 99% 54 100% 239 (longest request)
根據(jù)指標顯示,我單機每秒就能處理 4000+ 的請求,正常服務器都是多核配置,處理 1W+ 的請求根本沒有問題。
而且查看日志發(fā)現(xiàn)整個服務過程中,請求都很正常,流量均勻,Redis 也很正常:
//stat.log...result:1,localSales:145result:1,localSales:146result:1,localSales:147result:1,localSales:148result:1,localSales:149result:1,localSales:150result:0,localSales:151result:0,localSales:152result:0,localSales:153result:0,localSales:154result:0,localSales:156...
總結回顧
總體來說,秒殺系統(tǒng)是非常復雜的。
我們這里只是簡單介紹模擬了一下單機如何優(yōu)化到高性能,集群如何避免單點故障,保證訂單不超賣、不少賣的一些策略。
完整的訂單系統(tǒng)還有訂單進度的查看,每臺服務器上都有一個任務,定時的從總庫存同步余票和庫存信息展示給用戶,還有用戶在訂單有效期內(nèi)不支付,釋放訂單,補充到庫存等等。
我們實現(xiàn)了高并發(fā)搶票的核心邏輯,可以說系統(tǒng)設計的非常的巧妙,巧妙的避開了對 DB 數(shù)據(jù)庫 IO 的操作。
對 Redis 網(wǎng)絡 IO 的高并發(fā)請求,幾乎所有的計算都是在內(nèi)存中完成的,而且有效的保證了不超賣、不少賣,還能夠容忍部分機器的宕機。
我覺得其中有兩點特別值得學習總結:
①負載均衡,分而治之
通過負載均衡,將不同的流量劃分到不同的機器上,每臺機器處理好自己的請求,將自己的性能發(fā)揮到極致。
這樣系統(tǒng)的整體也就能承受極高的并發(fā)了,就像工作的一個團隊,每個人都將自己的價值發(fā)揮到了極致,團隊成長自然是很大的。
②合理的使用并發(fā)和異步
自 Epoll 網(wǎng)絡架構模型解決了 c10k 問題以來,異步越來越被服務端開發(fā)人員所接受,能夠用異步來做的工作,就用異步來做,在功能拆解上能達到意想不到的效果。
這點在 Nginx、Node.JS、Redis 上都能體現(xiàn),他們處理網(wǎng)絡請求使用的 Epoll 模型,用實踐告訴了我們單線程依然可以發(fā)揮強大的威力。
服務器已經(jīng)進入了多核時代,Go 語言這種天生為并發(fā)而生的語言,完美的發(fā)揮了服務器多核優(yōu)勢,很多可以并發(fā)處理的任務都可以使用并發(fā)來解決,比如 Go 處理 HTTP 請求時每個請求都會在一個 Goroutine 中執(zhí)行。
到此,相信大家對“12306的架構有哪些優(yōu)點”有了更深的了解,不妨來實際操作一番吧!這里是億速云網(wǎng)站,更多相關內(nèi)容可以進入相關頻道進行查詢,關注我們,繼續(xù)學習!
免責聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權內(nèi)容。