您好,登錄后才能下訂單哦!
今天就跟大家聊聊有關(guān)spark RDD的依賴關(guān)系是什么,可能很多人都不太了解,為了讓大家更加了解,小編給大家總結(jié)了以下內(nèi)容,希望大家根據(jù)這篇文章可以有所收獲。
RDD的依賴關(guān)系有一種類似于上下文之間的聯(lián)系,這種關(guān)系也是存在于各個RDD算子間的,相鄰兩個RDD間的關(guān)系被稱作依賴關(guān)系,多個連續(xù)的RDD之間的關(guān)系,被稱作血緣關(guān)系。
每個RDD都會保存血緣關(guān)系,就像是知道自己的父親是誰,自己的父親的父親是誰一樣。
RDD不會保存數(shù)據(jù),因此當一個算子出錯的時候,為了能夠提高容錯性,需要通過算子間的依賴關(guān)系找到數(shù)據(jù)源頭,再按順序執(zhí)行,從而重新讀取計算。
def main(args: Array[String]): Unit = { val sparConf = new SparkConf().setMaster("local").setAppName("WordCount") val sc = new SparkContext(sparConf) val lines: RDD[String] = sc.makeRDD(List("hello world","hello spark")) println(lines.toDebugString) println("*************************") val words: RDD[String] = lines.flatMap(_.split(" ")) println(words.toDebugString) println("*************************") val wordToOne = words.map(word=>(word,1)) println(wordToOne.toDebugString) println("*************************") val wordToSum: RDD[(String, Int)] = wordToOne.reduceByKey(_+_) println(wordToSum.toDebugString) println("*************************") val array: Array[(String, Int)] = wordToSum.collect() array.foreach(println) sc.stop() }
輸出的血緣關(guān)系日志如下:
(1) ParallelCollectionRDD[0] at makeRDD at RDD_Dependence_01.scala:13 [] ************************* (1) MapPartitionsRDD[1] at flatMap at RDD_Dependence_01.scala:16 [] | ParallelCollectionRDD[0] at makeRDD at RDD_Dependence_01.scala:13 [] ************************* (1) MapPartitionsRDD[2] at map at RDD_Dependence_01.scala:19 [] | MapPartitionsRDD[1] at flatMap at RDD_Dependence_01.scala:16 [] | ParallelCollectionRDD[0] at makeRDD at RDD_Dependence_01.scala:13 [] ************************* (1) ShuffledRDD[3] at reduceByKey at RDD_Dependence_01.scala:22 [] +-(1) MapPartitionsRDD[2] at map at RDD_Dependence_01.scala:19 [] | MapPartitionsRDD[1] at flatMap at RDD_Dependence_01.scala:16 [] | ParallelCollectionRDD[0] at makeRDD at RDD_Dependence_01.scala:13 [] *************************
窄依賴指的是父RDD的分區(qū)數(shù)據(jù)只提供給一個對應(yīng)的子RDD的分區(qū)
寬依賴指的是父RDD的分區(qū)數(shù)據(jù)提供給多個對應(yīng)的子RDD的分區(qū),當父RDD有Shuffle操作的時候,父RDD與子RDD的依賴關(guān)系必定是寬依賴,因此其也被稱為Shuffle依賴。
DAG(Directed Acyclic Graph)有向無環(huán)圖是由點和線組成的拓撲圖形,該圖形具有方向, 不會閉環(huán)。例如,DAG 記錄了 RDD 的轉(zhuǎn)換過程和任務(wù)的階段。
DAGScheduler部分源碼解釋了任務(wù)的階段劃分過程:
在handleJobSubmitted方法有一個傳入?yún)?shù)為finalRDD,通過 finalStage = createResultStage(finalRDD, func, partitions, jobId, callSite)
方法,可以看出無論有多少個RDD,都會默認通過最終的RDD去創(chuàng)建一個resultStage。
之后createResultStage調(diào)用了getOrCreateParentStages(rdd: RDD[_], firstJobId: Int): List[Stage]
方法,通過 getShuffleDependencies( rdd: RDD[_])
返回依賴關(guān)系的鏈式結(jié)構(gòu)(ShuffleDependency的存儲map),如: A <-- B <-- C
遍歷ShuffleDependency的存儲map,通過getOrCreateShuffleMapStage(shuffleDep, firstJobId)
去創(chuàng)建階段,這里通過firstJobId去做關(guān)聯(lián),緩存的stage在shuffleIdToMapStage中。
/** * Create a ResultStage associated with the provided jobId. */ private def createResultStage( rdd: RDD[_], func: (TaskContext, Iterator[_]) => _, partitions: Array[Int], jobId: Int, callSite: CallSite): ResultStage = { checkBarrierStageWithDynamicAllocation(rdd) checkBarrierStageWithNumSlots(rdd) checkBarrierStageWithRDDChainPattern(rdd, partitions.toSet.size) val parents = getOrCreateParentStages(rdd, jobId) //這里調(diào)用 val id = nextStageId.getAndIncrement() val stage = new ResultStage(id, rdd, func, partitions, parents, jobId, callSite) stageIdToStage(id) = stage updateJobIdStageIdMaps(jobId, stage) stage } /** * Get or create the list of parent stages for a given RDD. The new Stages will be created with * the provided firstJobId. */ private def getOrCreateParentStages(rdd: RDD[_], firstJobId: Int): List[Stage] = { getShuffleDependencies(rdd).map { shuffleDep => getOrCreateShuffleMapStage(shuffleDep, firstJobId) }.toList } /** * Returns shuffle dependencies that are immediate parents of the given RDD. * * This function will not return more distant ancestors. For example, if C has a shuffle * dependency on B which has a shuffle dependency on A: * * A <-- B <-- C * * calling this function with rdd C will only return the B <-- C dependency. * * This function is scheduler-visible for the purpose of unit testing. */ private[scheduler] def getShuffleDependencies( rdd: RDD[_]): HashSet[ShuffleDependency[_, _, _]] = { val parents = new HashSet[ShuffleDependency[_, _, _]] val visited = new HashSet[RDD[_]] val waitingForVisit = new ListBuffer[RDD[_]] waitingForVisit += rdd while (waitingForVisit.nonEmpty) { val toVisit = waitingForVisit.remove(0) if (!visited(toVisit)) { visited += toVisit toVisit.dependencies.foreach { case shuffleDep: ShuffleDependency[_, _, _] => parents += shuffleDep case dependency => waitingForVisit.prepend(dependency.rdd) } } } parents }
RDD 任務(wù)切分為:Application、Job、Stage 和 Task
Application:初始化一個 SparkContext 即生成一個 Application;
Job:一個 Action 算子就會生成一個 Job;
Stage:Stage 等于寬依賴(ShuffleDependency)的個數(shù)加 1;
Task:一個 Stage 階段中,最后一個 RDD 的分區(qū)個數(shù)就是 Task 的個數(shù)。
注意:Application->Job->Stage->Task 每一層都是 1 對 n 的關(guān)系。
看完上述內(nèi)容,你們對spark RDD的依賴關(guān)系是什么有進一步的了解嗎?如果還想了解更多知識或者相關(guān)內(nèi)容,請關(guān)注億速云行業(yè)資訊頻道,感謝大家的支持。
免責聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。