溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務(wù)條款》

基于Mixerless Telemetry如何實現(xiàn)漸進(jìn)式灰度發(fā)布系

發(fā)布時間:2021-11-23 22:00:34 來源:億速云 閱讀:126 作者:柒染 欄目:云計算

基于Mixerless Telemetry如何實現(xiàn)漸進(jìn)式灰度發(fā)布系,很多新手對此不是很清楚,為了幫助大家解決這個難題,下面小編將為大家詳細(xì)講解,有這方面需求的人可以來學(xué)習(xí)下,希望你能有所收獲。

作為CNCF成員,Weave Flagger提供了持續(xù)集成和持續(xù)交付的各項能力。Flagger將漸進(jìn)式發(fā)布總結(jié)為3類:

  • 灰度發(fā)布/金絲雀發(fā)布(Canary):用于漸進(jìn)式切流到灰度版本(progressive traffic shifting)

  • A/B測試(A/B Testing):用于根據(jù)請求信息將用戶請求路由到A/B版本(HTTP headers and cookies traffic routing)

  • 藍(lán)綠發(fā)布(Blue/Green):用于流量切換和流量復(fù)制 (traffic switching and mirroring)

本篇將介紹Flagger on ASM的漸進(jìn)式灰度發(fā)布實踐。

Setup Flagger

1 部署Flagger

執(zhí)行如下命令部署flagger(完整腳本參見:demo_canary.sh)。

alias k="kubectl --kubeconfig $USER_CONFIG"
alias h="helm --kubeconfig $USER_CONFIG"

cp $MESH_CONFIG kubeconfig
k -n istio-system create secret generic istio-kubeconfig --from-file kubeconfig
k -n istio-system label secret istio-kubeconfig istio/multiCluster=true

h repo add flagger https://flagger.app
h repo update
k apply -f $FLAAGER_SRC/artifacts/flagger/crd.yaml
h upgrade -i flagger flagger/flagger --namespace=istio-system \
    --set crd.create=false \
    --set meshProvider=istio \
    --set metricsServer=http://prometheus:9090 \
    --set istio.kubeconfig.secretName=istio-kubeconfig \
    --set istio.kubeconfig.key=kubeconfig

2 部署Gateway

在灰度發(fā)布過程中,F(xiàn)lagger會請求ASM更新用于灰度流量配置的VirtualService,這個VirtualService會使用到命名為public-gateway的Gateway。為此我們創(chuàng)建相關(guān)Gateway配置文件public-gateway.yaml如下:

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
  name: public-gateway
  namespace: istio-system
spec:
  selector:
    istio: ingressgateway
  servers:
    - port:
        number: 80
        name: http
        protocol: HTTP
      hosts:
        - "*"

執(zhí)行如下命令部署Gateway:

kubectl --kubeconfig "$MESH_CONFIG" apply -f resources_canary/public-gateway.yaml

3 部署flagger-loadtester

flagger-loadtester是灰度發(fā)布階段,用于探測灰度POD實例的應(yīng)用。

執(zhí)行如下命令部署flagger-loadtester:

kubectl --kubeconfig "$USER_CONFIG" apply -k "https://github.com/fluxcd/flagger//kustomize/tester?ref=main"

4 部署PodInfo及其HPA

我們首先使用Flagger發(fā)行版自帶的HPA配置(這是一個運維級的HPA),待完成完整流程后,我們再使用應(yīng)用級的HPA。

執(zhí)行如下命令部署PodInfo及其HPA:

kubectl --kubeconfig "$USER_CONFIG" apply -k "https://github.com/fluxcd/flagger//kustomize/podinfo?ref=main"

漸進(jìn)式灰度發(fā)布

1 部署Canary

Canary是基于Flagger進(jìn)行灰度發(fā)布的核心CRD,詳見How it works。我們首先部署如下Canary配置文件podinfo-canary.yaml,完成完整的漸進(jìn)式灰度流程,然后在此基礎(chǔ)上引入應(yīng)用維度的監(jiān)控指標(biāo),來進(jìn)一步實現(xiàn)應(yīng)用有感知的漸進(jìn)式灰度發(fā)布。

apiVersion: flagger.app/v1beta1
kind: Canary
metadata:
  name: podinfo
  namespace: test
spec:
  # deployment reference
  targetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: podinfo
  # the maximum time in seconds for the canary deployment
  # to make progress before it is rollback (default 600s)
  progressDeadlineSeconds: 60
  # HPA reference (optional)
  autoscalerRef:
    apiVersion: autoscaling/v2beta2
    kind: HorizontalPodAutoscaler
    name: podinfo
  service:
    # service port number
    port: 9898
    # container port number or name (optional)
    targetPort: 9898
    # Istio gateways (optional)
    gateways:
    - public-gateway.istio-system.svc.cluster.local
    # Istio virtual service host names (optional)
    hosts:
    - '*'
    # Istio traffic policy (optional)
    trafficPolicy:
      tls:
        # use ISTIO_MUTUAL when mTLS is enabled
        mode: DISABLE
    # Istio retry policy (optional)
    retries:
      attempts: 3
      perTryTimeout: 1s
      retryOn: "gateway-error,connect-failure,refused-stream"
  analysis:
    # schedule interval (default 60s)
    interval: 1m
    # max number of failed metric checks before rollback
    threshold: 5
    # max traffic percentage routed to canary
    # percentage (0-100)
    maxWeight: 50
    # canary increment step
    # percentage (0-100)
    stepWeight: 10
    metrics:
    - name: request-success-rate
      # minimum req success rate (non 5xx responses)
      # percentage (0-100)
      thresholdRange:
        min: 99
      interval: 1m
    - name: request-duration
      # maximum req duration P99
      # milliseconds
      thresholdRange:
        max: 500
      interval: 30s
    # testing (optional)
    webhooks:
      - name: acceptance-test
        type: pre-rollout
        url: http://flagger-loadtester.test/
        timeout: 30s
        metadata:
          type: bash
          cmd: "curl -sd 'test' http://podinfo-canary:9898/token | grep token"
      - name: load-test
        url: http://flagger-loadtester.test/
        timeout: 5s
        metadata:
          cmd: "hey -z 1m -q 10 -c 2 http://podinfo-canary.test:9898/"

執(zhí)行如下命令部署Canary:

kubectl --kubeconfig "$USER_CONFIG" apply -f resources_canary/podinfo-canary.yaml

部署Canary后,F(xiàn)lagger會將名為podinfo的Deployment復(fù)制為podinfo-primary,并將podinfo-primary擴(kuò)容至HPA定義的最小POD數(shù)量。然后逐步將名為podinfo的這個Deployment的POD數(shù)量將縮容至0。也就是說,podinfo將作為灰度版本的Deployment,podinfo-primary將作為生產(chǎn)版本的Deployment

同時,創(chuàng)建3個服務(wù)——podinfo、podinfo-primary和podinfo-canary,前兩者指向podinfo-primary這個Deployment,最后者指向podinfo這個Deployment。

2 升級podinfo

執(zhí)行如下命令,將灰度Deployment的版本從3.1.0升級到3.1.1:

kubectl --kubeconfig "$USER_CONFIG" -n test set image deployment/podinfo podinfod=stefanprodan/podinfo:3.1.1

3 漸進(jìn)式灰度發(fā)布

此時,F(xiàn)lagger將開始執(zhí)行如本系列第一篇所述的漸進(jìn)式灰度發(fā)布流程,這里再簡述主要流程如下:

  1. 逐步擴(kuò)容灰度POD、驗證

  2. 漸進(jìn)式切流、驗證

  3. 滾動升級生產(chǎn)Deployment、驗證

  4. 100%切回生產(chǎn)

  5. 縮容灰度POD至0

我們可以通過如下命令觀察這個漸進(jìn)式切流的過程:

while true; do kubectl --kubeconfig "$USER_CONFIG" -n test describe canary/podinfo; sleep 10s;done

輸出的日志信息示意如下:

Events:
  Type     Reason  Age                From     Message
  ----     ------  ----               ----     -------
  Warning  Synced  39m                flagger  podinfo-primary.test not ready: waiting for rollout to finish: observed deployment generation less then desired generation
  Normal   Synced  38m (x2 over 39m)  flagger  all the metrics providers are available!
  Normal   Synced  38m                flagger  Initialization done! podinfo.test
  Normal   Synced  37m                flagger  New revision detected! Scaling up podinfo.test
  Normal   Synced  36m                flagger  Starting canary analysis for podinfo.test
  Normal   Synced  36m                flagger  Pre-rollout check acceptance-test passed
  Normal   Synced  36m                flagger  Advance podinfo.test canary weight 10
  Normal   Synced  35m                flagger  Advance podinfo.test canary weight 20
  Normal   Synced  34m                flagger  Advance podinfo.test canary weight 30
  Normal   Synced  33m                flagger  Advance podinfo.test canary weight 40
  Normal   Synced  29m (x4 over 32m)  flagger  (combined from similar events): Promotion completed! Scaling down podinfo.test

相應(yīng)的Kiali視圖(可選),如下圖所示:

基于Mixerless Telemetry如何實現(xiàn)漸進(jìn)式灰度發(fā)布系

到此,我們完成了一個完整的漸進(jìn)式灰度發(fā)布流程。如下是擴(kuò)展閱讀。

灰度中的應(yīng)用級擴(kuò)縮容

在完成上述漸進(jìn)式灰度發(fā)布流程的基礎(chǔ)上,我們接下來再來看上述Canary配置中,關(guān)于HPA的配置。

autoscalerRef:
    apiVersion: autoscaling/v2beta2
    kind: HorizontalPodAutoscaler
    name: podinfo

這個名為podinfo的HPA是Flagger自帶的配置,當(dāng)灰度Deployment的CPU利用率達(dá)到99%時擴(kuò)容。完整配置如下:

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
  name: podinfo
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: podinfo
  minReplicas: 2
  maxReplicas: 4
  metrics:
    - type: Resource
      resource:
        name: cpu
        target:
          type: Utilization
          # scale up if usage is above
          # 99% of the requested CPU (100m)
          averageUtilization: 99

我們在前面一篇中講述了應(yīng)用級擴(kuò)縮容的實踐,在此,我們將其應(yīng)用于灰度發(fā)布的過程中。

1 感知應(yīng)用QPS的HPA

執(zhí)行如下命令部署感知應(yīng)用請求數(shù)量的HPA,實現(xiàn)在QPS達(dá)到10時進(jìn)行擴(kuò)容(完整腳本參見:advanced_canary.sh):

kubectl --kubeconfig "$USER_CONFIG" apply -f resources_hpa/requests_total_hpa.yaml

相應(yīng)地,Canary配置更新為:

autoscalerRef:
    apiVersion: autoscaling/v2beta2
    kind: HorizontalPodAutoscaler
    name: podinfo-total

2 升級podinfo

執(zhí)行如下命令,將灰度Deployment的版本從3.1.0升級到3.1.1:

kubectl --kubeconfig "$USER_CONFIG" -n test set image deployment/podinfo podinfod=stefanprodan/podinfo:3.1.1

3 驗證漸進(jìn)式灰度發(fā)布及HPA

命令觀察這個漸進(jìn)式切流的過程:

while true; do k -n test describe canary/podinfo; sleep 10s;done

在漸進(jìn)式灰度發(fā)布過程中(在出現(xiàn)Advance podinfo.test canary weight 10信息后,見下圖),我們使用如下命令,從入口網(wǎng)關(guān)發(fā)起請求以增加QPS:

INGRESS_GATEWAY=$(kubectl --kubeconfig $USER_CONFIG -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip}')
hey -z 20m -c 2 -q 10 http://$INGRESS_GATEWAY

使用如下命令觀察漸進(jìn)式灰度發(fā)布進(jìn)度:

watch kubectl --kubeconfig $USER_CONFIG get canaries --all-namespaces

使用如下命令觀察hpa的副本數(shù)變化:

watch kubectl --kubeconfig $USER_CONFIG -n test get hpa/podinfo-total

結(jié)果如下圖所示,在漸進(jìn)式灰度發(fā)布過程中,當(dāng)切流到30%的某一時刻,灰度Deployment的副本數(shù)為4:

基于Mixerless Telemetry如何實現(xiàn)漸進(jìn)式灰度發(fā)布系

灰度中的應(yīng)用級監(jiān)控指標(biāo)

在完成上述灰度中的應(yīng)用級擴(kuò)縮容的基礎(chǔ)上,最后我們再來看上述Canary配置中,關(guān)于metrics的配置:

analysis:
    metrics:
    - name: request-success-rate
      # minimum req success rate (non 5xx responses)
      # percentage (0-100)
      thresholdRange:
        min: 99
      interval: 1m
    - name: request-duration
      # maximum req duration P99
      # milliseconds
      thresholdRange:
        max: 500
      interval: 30s
    # testing (optional)

1 Flagger內(nèi)置監(jiān)控指標(biāo)

到目前為止,Canary中使用的metrics配置一直是Flagger的兩個內(nèi)置監(jiān)控指標(biāo):請求成功率(request-success-rate)和請求延遲(request-duration)。如下圖所示,F(xiàn)lagger中不同平臺對內(nèi)置監(jiān)控指標(biāo)的定義,其中,istio使用的是本系列第一篇介紹的Mixerless Telemetry相關(guān)的遙測數(shù)據(jù)。

基于Mixerless Telemetry如何實現(xiàn)漸進(jìn)式灰度發(fā)布系

2 自定義監(jiān)控指標(biāo)

為了展示灰度發(fā)布過程中,遙測數(shù)據(jù)為驗證灰度環(huán)境帶來的更多靈活性,我們再次以istio_requests_total為例,創(chuàng)建一個名為not-found-percentage的MetricTemplate,統(tǒng)計請求返回404錯誤碼的數(shù)量占請求總數(shù)的比例

配置文件metrics-404.yaml如下(完整腳本參見:advanced_canary.sh):

apiVersion: flagger.app/v1beta1
kind: MetricTemplate
metadata:
  name: not-found-percentage
  namespace: istio-system
spec:
  provider:
    type: prometheus
    address: http://prometheus.istio-system:9090
  query: |
    100 - sum(
        rate(
            istio_requests_total{
              reporter="destination",
              destination_workload_namespace="{{ namespace }}",
              destination_workload="{{ target }}",
              response_code!="404"
            }[{{ interval }}]
        )
    )
    /
    sum(
        rate(
            istio_requests_total{
              reporter="destination",
              destination_workload_namespace="{{ namespace }}",
              destination_workload="{{ target }}"
            }[{{ interval }}]
        )
    ) * 100

執(zhí)行如下命令創(chuàng)建上述MetricTemplate:

k apply -f resources_canary2/metrics-404.yaml

相應(yīng)地,Canary中metrics的配置更新為:

analysis:
    metrics:
      - name: "404s percentage"
        templateRef:
          name: not-found-percentage
          namespace: istio-system
        thresholdRange:
          max: 5
        interval: 1m

3 最后的驗證

最后,我們一次執(zhí)行完整的實驗?zāi)_本。腳本advanced_canary.sh示意如下:

#!/usr/bin/env sh
SCRIPT_PATH="$(
    cd "$(dirname "$0")" >/dev/null 2>&1
    pwd -P
)/"
cd "$SCRIPT_PATH" || exit

source config
alias k="kubectl --kubeconfig $USER_CONFIG"
alias m="kubectl --kubeconfig $MESH_CONFIG"
alias h="helm --kubeconfig $USER_CONFIG"

echo "#### I Bootstrap ####"
echo "1 Create a test namespace with Istio sidecar injection enabled:"
k delete ns test
m delete ns test
k create ns test
m create ns test
m label namespace test istio-injection=enabled

echo "2 Create a deployment and a horizontal pod autoscaler:"
k apply -f $FLAAGER_SRC/kustomize/podinfo/deployment.yaml -n test
k apply -f resources_hpa/requests_total_hpa.yaml
k get hpa -n test

echo "3 Deploy the load testing service to generate traffic during the canary analysis:"
k apply -k "https://github.com/fluxcd/flagger//kustomize/tester?ref=main"

k get pod,svc -n test
echo "......"
sleep 40s

echo "4 Create a canary custom resource:"
k apply -f resources_canary2/metrics-404.yaml
k apply -f resources_canary2/podinfo-canary.yaml

k get pod,svc -n test
echo "......"
sleep 120s

echo "#### III Automated canary promotion ####"

echo "1 Trigger a canary deployment by updating the container image:"
k -n test set image deployment/podinfo podinfod=stefanprodan/podinfo:3.1.1

echo "2 Flagger detects that the deployment revision changed and starts a new rollout:"

while true; do k -n test describe canary/podinfo; sleep 10s;done

使用如下命令執(zhí)行完整的實驗?zāi)_本:

sh progressive_delivery/advanced_canary.sh

實驗結(jié)果示意如下:

#### I Bootstrap ####
1 Create a test namespace with Istio sidecar injection enabled:
namespace "test" deleted
namespace "test" deleted
namespace/test created
namespace/test created
namespace/test labeled
2 Create a deployment and a horizontal pod autoscaler:
deployment.apps/podinfo created
horizontalpodautoscaler.autoscaling/podinfo-total created
NAME            REFERENCE            TARGETS              MINPODS   MAXPODS   REPLICAS   AGE
podinfo-total   Deployment/podinfo   <unknown>/10 (avg)   1         5         0          0s
3 Deploy the load testing service to generate traffic during the canary analysis:
service/flagger-loadtester created
deployment.apps/flagger-loadtester created
NAME                                      READY   STATUS     RESTARTS   AGE
pod/flagger-loadtester-76798b5f4c-ftlbn   0/2     Init:0/1   0          1s
pod/podinfo-689f645b78-65n9d              1/1     Running    0          28s

NAME                         TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)   AGE
service/flagger-loadtester   ClusterIP   172.21.15.223   <none>        80/TCP    1s
......
4 Create a canary custom resource:
metrictemplate.flagger.app/not-found-percentage created
canary.flagger.app/podinfo created
NAME                                      READY   STATUS    RESTARTS   AGE
pod/flagger-loadtester-76798b5f4c-ftlbn   2/2     Running   0          41s
pod/podinfo-689f645b78-65n9d              1/1     Running   0          68s

NAME                         TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)   AGE
service/flagger-loadtester   ClusterIP   172.21.15.223   <none>        80/TCP    41s
......
#### III Automated canary promotion ####
1 Trigger a canary deployment by updating the container image:
deployment.apps/podinfo image updated
2 Flagger detects that the deployment revision changed and starts a new rollout:

Events:
  Type     Reason  Age                  From     Message
  ----     ------  ----                 ----     -------
  Warning  Synced  10m                  flagger  podinfo-primary.test not ready: waiting for rollout to finish: observed deployment generation less then desired generation
  Normal   Synced  9m23s (x2 over 10m)  flagger  all the metrics providers are available!
  Normal   Synced  9m23s                flagger  Initialization done! podinfo.test
  Normal   Synced  8m23s                flagger  New revision detected! Scaling up podinfo.test
  Normal   Synced  7m23s                flagger  Starting canary analysis for podinfo.test
  Normal   Synced  7m23s                flagger  Pre-rollout check acceptance-test passed
  Normal   Synced  7m23s                flagger  Advance podinfo.test canary weight 10
  Normal   Synced  6m23s                flagger  Advance podinfo.test canary weight 20
  Normal   Synced  5m23s                flagger  Advance podinfo.test canary weight 30
  Normal   Synced  4m23s                flagger  Advance podinfo.test canary weight 40
  Normal   Synced  23s (x4 over 3m23s)  flagger  (combined from similar events): Promo

看完上述內(nèi)容是否對您有幫助呢?如果還想對相關(guān)知識有進(jìn)一步的了解或閱讀更多相關(guān)文章,請關(guān)注億速云行業(yè)資訊頻道,感謝您對億速云的支持。

向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI