溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶服務(wù)條款》

R語(yǔ)言怎么實(shí)現(xiàn)散點(diǎn)圖組合頻率分布圖

發(fā)布時(shí)間:2021-11-22 16:00:33 來(lái)源:億速云 閱讀:622 作者:iii 欄目:大數(shù)據(jù)

本篇內(nèi)容介紹了“R語(yǔ)言怎么實(shí)現(xiàn)散點(diǎn)圖組合頻率分布圖”的有關(guān)知識(shí),在實(shí)際案例的操作過(guò)程中,不少人都會(huì)遇到這樣的困境,接下來(lái)就讓小編帶領(lǐng)大家學(xué)習(xí)一下如何處理這些情況吧!希望大家仔細(xì)閱讀,能夠?qū)W有所成!

 首先是頻率分布直方圖

部分?jǐn)?shù)據(jù)如下R語(yǔ)言怎么實(shí)現(xiàn)散點(diǎn)圖組合頻率分布圖

做圖用到的是最后一列數(shù)據(jù)

df1<-read.csv("example1.csv",header=T)
library(ggplot2)
ggplot(df1) +
  geom_histogram(aes(x = delay,y=..density..),  
                 fill = '#dedede', colour = "black", 
                 binwidth = 1) +
  scale_y_continuous("Frequency", expand = c(0,0), limits = c(0,0.20)) + 
  scale_x_continuous("Delay from onset-to-isolation of infector (days)", 
                     expand = c(0,0), 
                     limits = c(0,27), 
                     breaks = seq(0,27, by = 3)) +
  theme_classic() +
  theme(#aspect.ratio = 2, 
        legend.position = 'none')
 
R語(yǔ)言怎么實(shí)現(xiàn)散點(diǎn)圖組合頻率分布圖  
image.png

這里新學(xué)到的知識(shí)點(diǎn)是theme()函數(shù)里的aspect.ratio參數(shù),這個(gè)參數(shù)可以控制整幅圖占比,如果是0到1之間就是縱向的壓縮,如果是1到2之間就是縱向的壓縮,我們分別設(shè)置0.5和1.5看下效果

p0.5<-ggplot(df1) +
  geom_histogram(aes(x = delay,y=..density..),  
                 fill = '#dedede', colour = "black", 
                 binwidth = 1) +
  scale_y_continuous("Frequency", expand = c(0,0), limits = c(0,0.20)) + 
  scale_x_continuous("Delay from onset-to-isolation of infector (days)", 
                     expand = c(0,0), 
                     limits = c(0,27), 
                     breaks = seq(0,27, by = 3)) +
  theme_classic() +
  theme(aspect.ratio = 0.5, 
        legend.position = 'none')
p0.5
p1.5<-ggplot(df1) +
  geom_histogram(aes(x = delay,y=..density..),  
                 fill = '#dedede', colour = "black", 
                 binwidth = 1) +
  scale_y_continuous("Frequency", expand = c(0,0), limits = c(0,0.20)) + 
  scale_x_continuous("Delay from onset-to-isolation of infector (days)", 
                     expand = c(0,0), 
                     limits = c(0,27), 
                     breaks = seq(0,27, by = 3)) +
  theme_classic() +
  theme(aspect.ratio = 1.5, 
        legend.position = 'none')
cowplot::plot_grid(p0.5,p1.5,labels = c("p0.5","p1.5"))

 
R語(yǔ)言怎么實(shí)現(xiàn)散點(diǎn)圖組合頻率分布圖  
image.png
 接下來(lái)是散點(diǎn)圖

散點(diǎn)圖的部分?jǐn)?shù)據(jù)如下

R語(yǔ)言怎么實(shí)現(xiàn)散點(diǎn)圖組合頻率分布圖  
image.png
df2<-read.csv("example2.csv",header=T)
ggplot(df2) +
  geom_smooth(method = lm, aes(x=delay, y = n), color = "black", alpha = 0.1, size = 0.7) +
  geom_jitter(aes(x = delay, y = n, colour = cluster.risk), height = 0.3, width = 0.3) +
  scale_y_continuous("Secondary Cases / Infector", breaks = 1:11) +
  scale_x_continuous("Delay from onset-to-confirmation of infector (days)", 
                     expand = c(0,0),                     
                     limits = c(0,27), breaks = seq(0,27, by = 3)) +
  theme_classic() +
  theme(aspect.ratio = 1, legend.position = c(0.85, 0.85), legend.title = element_blank())  #colours are modified custom in post 

 
R語(yǔ)言怎么實(shí)現(xiàn)散點(diǎn)圖組合頻率分布圖  
image.png

這里需要注意的是散點(diǎn)圖他用到的函數(shù)是geom_jitter(),而沒(méi)有用geom_point(),這兩個(gè)函數(shù)的區(qū)別是如果兩個(gè)點(diǎn)的坐標(biāo)是一樣的geom_jitter()函數(shù)也會(huì)將兩個(gè)點(diǎn)分開(kāi),而geom_point()函數(shù)會(huì)將兩個(gè)點(diǎn)重疊的畫(huà)到一起

 最后是拼圖
p1<-ggplot(df1) +
  geom_histogram(aes(x = delay,y=..density..),  
                 fill = '#dedede', colour = "black", 
                 binwidth = 1) +
  scale_y_continuous("Frequency", expand = c(0,0), limits = c(0,0.20)) + 
  scale_x_continuous("Delay from onset-to-isolation of infector (days)", 
                     expand = c(0,0), 
                     limits = c(0,27), 
                     breaks = seq(0,27, by = 3)) +
  theme_classic() +
  theme(#aspect.ratio = 0.5, 
        legend.position = 'none')
p2<-ggplot(df2) +
  geom_smooth(method = lm, aes(x=delay, y = n), color = "black", alpha = 0.1, size = 0.7) +
  geom_jitter(aes(x = delay, y = n, colour = cluster.risk), height = 0.3, width = 0.3) +
  scale_y_continuous("Secondary Cases / Infector", breaks = 1:11) +
  scale_x_continuous("Delay from onset-to-confirmation of infector (days)", 
                     expand = c(0,0),                     
                     limits = c(0,27), breaks = seq(0,27, by = 3)) +
  theme_classic() +
  theme( legend.position = c(0.85, 0.85), 
         legend.title = element_blank())  #colours are modified custom in post 
library(aplot)
p2%>%
  insert_top(p1,height = 0.3)
 
R語(yǔ)言怎么實(shí)現(xiàn)散點(diǎn)圖組合頻率分布圖    

“R語(yǔ)言怎么實(shí)現(xiàn)散點(diǎn)圖組合頻率分布圖”的內(nèi)容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業(yè)相關(guān)的知識(shí)可以關(guān)注億速云網(wǎng)站,小編將為大家輸出更多高質(zhì)量的實(shí)用文章!

向AI問(wèn)一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI