溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

怎樣理解Python線程池

發(fā)布時間:2021-10-27 19:10:38 來源:億速云 閱讀:122 作者:柒染 欄目:編程語言

本篇文章給大家分享的是有關怎樣理解Python線程池,小編覺得挺實用的,因此分享給大家學習,希望大家閱讀完這篇文章后可以有所收獲,話不多說,跟著小編一起來看看吧。

總結一下自己總結的對Python線程池經(jīng)驗之談,對于那些沒有接觸學習過編程語言或者多開發(fā)語言略懂的用戶而言,Python語言是絕對的選擇之一,并建議初學的程序員先從Python開始學習編程。

import Queue, threading, sys   from threading import Thread   import time,urllib   # working thread   class Worker(Thread):      worker_count = 0      def __init__( self, workQueue, resultQueue, timeout = 0, **kwds):          Thread.__init__( self, **kwds )          self.id = Worker.worker_count          Worker.worker_count += 1          self.setDaemon( True )          self.workQueue = workQueue          self.resultQueue = resultQueue          self.timeout = timeout          self.start( )      def run( self ):          ''' the get-some-work, do-some-work main loop of worker threads '''          while True:              try:                  callable, args, kwds = self.workQueue.get(timeout=self.timeout)                  res = callable(*args, **kwds)                  print "worker[%2d]: %s" % (self.id, str(res) )                  self.resultQueue.put( res )              except Queue.Empty:                  break              except :                  print 'worker[%2d]' % self.id, sys.exc_info()[:2]                     class WorkerManager:      def __init__( self, num_of_workers=10, timeout = 1):          self.workQueue = Queue.Queue()          self.resultQueue = Queue.Queue()          self.workers = []          self.timeout = timeout          self._recruitThreads( num_of_workers )      def _recruitThreads( self, num_of_workers ):          for i in range( num_of_workers ):              worker = Worker( self.workQueue, self.resultQueue, self.timeout )              self.workers.append(worker)      def wait_for_complete( self):          # ...then, wait for each of them to terminate:          while len(self.workers):              worker = self.workers.pop()              worker.join( )              if worker.isAlive() and not self.workQueue.empty():                  self.workers.append( worker )          print "All jobs are are completed."      def add_job( self, callable, *args, **kwds ):          self.workQueue.put( (callable, args, kwds) )      def get_result( self, *args, **kwds ):          return self.resultQueue.get( *args, **kwds )

Worker類是一個Python線程池,不斷地從workQueue隊列中獲取需要執(zhí)行的任務,執(zhí)行之,并將結果寫入到resultQueue中。這里的workQueue和resultQueue都是現(xiàn)成安全的,其內部對各個線程的操作做了互斥。當從workQueue中獲取任務超時,則線程結束。

WorkerManager負責初始化Python線程池,提供將任務加入隊列和獲取結果的接口,并能等待所有任務完成。一個典型的測試例子如下,它用10個線程去下載一個固定頁面的內容,實際應用時應該是執(zhí)行不同的任務。

def test_job(id, sleep = 0.001 ):      try:          urllib.urlopen('[url]https://www.gmail.com/[/url]').read()      except:          print '[%4d]' % id, sys.exc_info()[:2]      return id   def test():      import socket      socket.setdefaulttimeout(10)      print 'start testing'      wm = WorkerManager(10)      for i in range(500):          wm.add_job( test_job, i, i*0.001 )      wm.wait_for_complete()      print 'end testing'

以上就是怎樣理解Python線程池,小編相信有部分知識點可能是我們日常工作會見到或用到的。希望你能通過這篇文章學到更多知識。更多詳情敬請關注億速云行業(yè)資訊頻道。

向AI問一下細節(jié)

免責聲明:本站發(fā)布的內容(圖片、視頻和文字)以原創(chuàng)、轉載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權內容。

AI