溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務(wù)條款》

Python語言的特點技巧有哪些

發(fā)布時間:2021-12-02 18:02:11 來源:億速云 閱讀:125 作者:柒染 欄目:編程語言

這期內(nèi)容當中小編將會給大家?guī)碛嘘P(guān)Python語言的特點技巧有哪些,文章內(nèi)容豐富且以專業(yè)的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。

1   介紹

從我開始學(xué)習(xí)Python時我就決定維護一個經(jīng)常使用的“竅門”列表。不論何時當我看到一段讓我覺得“酷,這樣也行!”的代碼時(在一個例子中、在StackOverflow、在開源碼軟件中,等等),我會嘗試它直到理解它,然后把它添加到列表中。這篇文章是清理過列表的一部分。如果你是一個有經(jīng)驗的Python程序員,盡管你可能已經(jīng)知道一些,但你仍能發(fā)現(xiàn)一些你不知道的。如果你是一個正在學(xué)習(xí)Python的C、C++或Java程序員,或者剛開始學(xué)習(xí)編程,那么你會像我一樣發(fā)現(xiàn)它們中的很多非常有用。

每個竅門或語言特性只能通過實例來驗證,無需過多解釋。雖然我已盡力使例子清晰,但它們中的一些仍會看起來有些復(fù)雜,這取決于你的熟悉程度。所以如果看過例子后還不清楚的話,標題能夠提供足夠的信息讓你通過Google獲取詳細的內(nèi)容。

列表按難度排序,常用的語言特征和技巧放在前面。

1.1   分拆

>>> a, b, c = 1, 2, 3 >>> a, b, c  (1, 2, 3)  >>> a, b, c = [1, 2, 3]  >>> a, b, c  (1, 2, 3)  >>> a, b, c = (2 * i + 1 for i in range(3))  >>> a, b, c  (1, 3, 5)  >>> a, (b, c), d = [1, (2, 3), 4]  >>> a  1 >>> b  2 >>> c  3 >>> d  4

1.2   交換變量分拆

>>> a, b = 1, 2 >>> a, b = b, a  >>> a, b  (2, 1)

1.3   拓展分拆 (Python 3下適用)

>>> a, *b, c = [1, 2, 3, 4, 5]  >>> a  1 >>> b  [2, 3, 4]  >>> c  5

1.4   負索引

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]  >>> a[-1]  10 >>> a[-3]  8

1.5   列表切片 (a[start:end])

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]  >>> a[2:8]  [2, 3, 4, 5, 6, 7]

1.6   使用負索引的列表切片

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]  >>> a[-4:-2]  [7, 8]

1.7   帶步進值的列表切片 (a[start:end:step])

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]  >>> a[::2]  [0, 2, 4, 6, 8, 10]  >>> a[::3]  [0, 3, 6, 9]  >>> a[2:8:2]  [2, 4, 6]

1.8   負步進值得列表切片

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]  >>> a[::-1]  [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]  >>> a[::-2]  [10, 8, 6, 4, 2, 0]

1.9   列表切片賦值

>>> a = [1, 2, 3, 4, 5]  >>> a[2:3] = [0, 0]  >>> a  [1, 2, 0, 0, 4, 5]  >>> a[1:1] = [8, 9]  >>> a  [1, 8, 9, 2, 0, 0, 4, 5]  >>> a[1:-1] = []  >>> a  [1, 5]

1.10   命名切片 (slice(start, end, step))

>>> a = [0, 1, 2, 3, 4, 5]  >>> LASTTHREE = slice(-3, None)  >>> LASTTHREE  slice(-3, None, None)  >>> a[LASTTHREE]  [3, 4, 5]

1.11   zip打包解包列表和倍數(shù)

>>> a = [1, 2, 3]  >>> b = ['a', 'b', 'c']  >>> z = zip(a, b)  >>> z  [(1, 'a'), (2, 'b'), (3, 'c')]  >>> zip(*z)  [(1, 2, 3), ('a', 'b', 'c')]

1.12   使用zip合并相鄰的列表項

>>> a = [1, 2, 3, 4, 5, 6]  >>> zip(*([iter(a)] * 2))  [(1, 2), (3, 4), (5, 6)]   >>> group_adjacent = lambda a, k: zip(*([iter(a)] * k))  >>> group_adjacent(a, 3)  [(1, 2, 3), (4, 5, 6)]  >>> group_adjacent(a, 2)  [(1, 2), (3, 4), (5, 6)]  >>> group_adjacent(a, 1)  [(1,), (2,), (3,), (4,), (5,), (6,)]   >>> zip(a[::2], a[1::2])  [(1, 2), (3, 4), (5, 6)]   >>> zip(a[::3], a[1::3], a[2::3])  [(1, 2, 3), (4, 5, 6)]   >>> group_adjacent = lambda a, k: zip(*(a[i::k] for i in range(k)))  >>> group_adjacent(a, 3)  [(1, 2, 3), (4, 5, 6)]  >>> group_adjacent(a, 2)  [(1, 2), (3, 4), (5, 6)]  >>> group_adjacent(a, 1)  [(1,), (2,), (3,), (4,), (5,), (6,)]

1.13  使用zip和iterators生成滑動窗口 (n -grams) 

>>> from itertools import islice  >>> def n_grams(a, n):  ...     z = (islice(a, i, None) for i in range(n))  ...     return zip(*z)  ...  >>> a = [1, 2, 3, 4, 5, 6]  >>> n_grams(a, 3)  [(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]  >>> n_grams(a, 2)  [(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]  >>> n_grams(a, 4)  [(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]

1.14   使用zip反轉(zhuǎn)字典

>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}  >>> m.items()  [('a', 1), ('c', 3), ('b', 2), ('d', 4)]  >>> zip(m.values(), m.keys())  [(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd')]  >>> mi = dict(zip(m.values(), m.keys()))  >>> mi  {1: 'a', 2: 'b', 3: 'c', 4: 'd'}

1.15   攤平列表:

>>> a = [[1, 2], [3, 4], [5, 6]]  >>> list(itertools.chain.from_iterable(a))  [1, 2, 3, 4, 5, 6]   >>> sum(a, [])  [1, 2, 3, 4, 5, 6]   >>> [x for l in a for x in l]  [1, 2, 3, 4, 5, 6]   >>> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]  >>> [x for l1 in a for l2 in l1 for x in l2]  [1, 2, 3, 4, 5, 6, 7, 8]   >>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]]  >>> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]  >>> flatten(a)  [1, 2, 3, 4, 5, 6, 7, 8]

注意: 根據(jù)Python的文檔,itertools.chain.from_iterable是***。

1.16   生成器表達式

>>> g = (x ** 2 for x in xrange(10))  >>> next(g)  0 >>> next(g)  1 >>> next(g)  4 >>> next(g)  9 >>> sum(x ** 3 for x in xrange(10))  2025 >>> sum(x ** 3 for x in xrange(10) if x % 3 == 1)  408

1.17   迭代字典

>>> m = {x: x ** 2 for x in range(5)}  >>> m  {0: 0, 1: 1, 2: 4, 3: 9, 4: 16}   >>> m = {x: 'A' + str(x) for x in range(10)}  >>> m  {0: 'A0', 1: 'A1', 2: 'A2', 3: 'A3', 4: 'A4', 5: 'A5', 6: 'A6', 7: 'A7', 8: 'A8', 9: 'A9'}

1.18   通過迭代字典反轉(zhuǎn)字典

>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}  >>> m  {'d': 4, 'a': 1, 'b': 2, 'c': 3}  >>> {v: k for k, v in m.items()}  {1: 'a', 2: 'b', 3: 'c', 4: 'd'}

1.19   命名序列 (collections.namedtuple)

>>> Point = collections.namedtuple('Point', ['x', 'y'])  >>> p = Point(x=1.0, y=2.0)  >>> p  Point(x=1.0, y=2.0)  >>> p.x  1.0 >>> p.y  2.0

1.20   命名列表的繼承:

>>> class Point(collections.namedtuple('PointBase', ['x', 'y'])):  ...     __slots__ = ()  ...     def __add__(self, other):  ...             return Point(x=self.x + other.x, y=self.y + other.y)  ...  >>> p = Point(x=1.0, y=2.0)  >>> q = Point(x=2.0, y=3.0)  >>> p + q  Point(x=3.0, y=5.0)

1.21   集合及集合操作

>>> A = {1, 2, 3, 3}  >>> A  set([1, 2, 3])  >>> B = {3, 4, 5, 6, 7}  >>> B  set([3, 4, 5, 6, 7])  >>> A | B  set([1, 2, 3, 4, 5, 6, 7])  >>> A & B  set([3])  >>> A - B  set([1, 2])  >>> B - A  set([4, 5, 6, 7])  >>> A ^ B  set([1, 2, 4, 5, 6, 7])  >>> (A ^ B) == ((A - B) | (B - A))  True

1.22   多重集及其操作 (collections.Counter)

>>> A = collections.Counter([1, 2, 2])  >>> B = collections.Counter([2, 2, 3])  >>> A  Counter({2: 2, 1: 1})  >>> B  Counter({2: 2, 3: 1})  >>> A | B  Counter({2: 2, 1: 1, 3: 1})  >>> A & B  Counter({2: 2})  >>> A + B  Counter({2: 4, 1: 1, 3: 1})  >>> A - B  Counter({1: 1})  >>> B - A  Counter({3: 1})

1.23   迭代中最常見的元素 (collections.Counter)

>>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])  >>> A  Counter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})  >>> A.most_common(1)  [(3, 4)]  >>> A.most_common(3)  [(3, 4), (1, 2), (2, 2)]

1.24   雙端隊列 (collections.deque)

>>> Q = collections.deque()  >>> Q.append(1)  >>> Q.appendleft(2)  >>> Q.extend([3, 4])  >>> Q.extendleft([5, 6])  >>> Q  deque([6, 5, 2, 1, 3, 4])  >>> Q.pop()  4 >>> Q.popleft()  6 >>> Q  deque([5, 2, 1, 3])  >>> Q.rotate(3)  >>> Q  deque([2, 1, 3, 5])  >>> Q.rotate(-3)  >>> Q  deque([5, 2, 1, 3])

1.25   有***長度的雙端隊列 (collections.deque)

>>> last_three = collections.deque(maxlen=3)  >>> for i in xrange(10):  ...     last_three.append(i)  ...     print ', '.join(str(x) for x in last_three)  ...  0 0, 1 0, 1, 2 1, 2, 3 2, 3, 4 3, 4, 5 4, 5, 6 5, 6, 7 6, 7, 8 7, 8, 9

1.26   字典排序 (collections.OrderedDict)

>>> m = dict((str(x), x) for x in range(10))  >>> print ', '.join(m.keys())  1, 0, 3, 2, 5, 4, 7, 6, 9, 8 >>> m = collections.OrderedDict((str(x), x) for x in range(10))  >>> print ', '.join(m.keys())  0, 1, 2, 3, 4, 5, 6, 7, 8, 9 >>> m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1))  >>> print ', '.join(m.keys())  10, 9, 8, 7, 6, 5, 4, 3, 2, 1

1.27   缺省字典 (collections.defaultdict)

>>> m = dict()  >>> m['a']  Traceback (most recent call last):    File "<stdin>", line 1, in <module>  KeyError: 'a' >>>  >>> m = collections.defaultdict(int)  >>> m['a']  0 >>> m['b']  0 >>> m = collections.defaultdict(str)  >>> m['a']  '' >>> m['b'] += 'a' >>> m['b']  'a' >>> m = collections.defaultdict(lambda: '[default value]')  >>> m['a']  '[default value]' >>> m['b']  '[default value]'

1.28   用缺省字典表示簡單的樹

>>> import json  >>> tree = lambda: collections.defaultdict(tree)  >>> root = tree()  >>> root['menu']['id'] = 'file' >>> root['menu']['value'] = 'File' >>> root['menu']['menuitems']['new']['value'] = 'New' >>> root['menu']['menuitems']['new']['onclick'] = 'new();' >>> root['menu']['menuitems']['open']['value'] = 'Open' >>> root['menu']['menuitems']['open']['onclick'] = 'open();' >>> root['menu']['menuitems']['close']['value'] = 'Close' >>> root['menu']['menuitems']['close']['onclick'] = 'close();' >>> print json.dumps(root, sort_keys=True, indent=4, separators=(',', ': '))  {      "menu": {          "id": "file",          "menuitems": {              "close": {                  "onclick": "close();",                  "value": "Close"             },              "new": {                  "onclick": "new();",                  "value": "New"             },              "open": {                  "onclick": "open();",                  "value": "Open"             }          },          "value": "File"     }  }

(到https://gist.github.com/hrldcpr/2012250查看詳情)

1.29   映射對象到唯一的序列數(shù) (collections.defaultdict)

>>> import itertools, collections  >>> value_to_numeric_map = collections.defaultdict(itertools.count().next)  >>> value_to_numeric_map['a']  0 >>> value_to_numeric_map['b']  1 >>> value_to_numeric_map['c']  2 >>> value_to_numeric_map['a']  0 >>> value_to_numeric_map['b']  1

1.30   ***最小元素 (heapq.nlargest和heapq.nsmallest)

>>> a = [random.randint(0, 100) for __ in xrange(100)]  >>> heapq.nsmallest(5, a)  [3, 3, 5, 6, 8]  >>> heapq.nlargest(5, a)  [100, 100, 99, 98, 98]

1.31   笛卡爾乘積 (itertools.product)

>>> for p in itertools.product([1, 2, 3], [4, 5]):  (1, 4)  (1, 5)  (2, 4)  (2, 5)  (3, 4)  (3, 5)  >>> for p in itertools.product([0, 1], repeat=4):  ...     print ''.join(str(x) for x in p)  ...  0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

1.32   組合的組合和置換 (itertools.combinations 和 itertools.combinations_with_replacement)

>>> for c in itertools.combinations([1, 2, 3, 4, 5], 3):  ...     print ''.join(str(x) for x in c)  ...  123 124 125 134 135 145 234 235 245 345 >>> for c in itertools.combinations_with_replacement([1, 2, 3], 2):  ...     print ''.join(str(x) for x in c)  ...  11 12 13 22 23 33

1.33   排序 (itertools.permutations)

>>> for p in itertools.permutations([1, 2, 3, 4]):  ...     print ''.join(str(x) for x in p)  ...  1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

1.34   鏈接的迭代 (itertools.chain)

>>> a = [1, 2, 3, 4]  >>> for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)):  ...     print p  ...  (1, 2)  (1, 3)  (1, 4)  (2, 3)  (2, 4)  (3, 4)  (1, 2, 3)  (1, 2, 4)  (1, 3, 4)  (2, 3, 4)  >>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1))  ...     print subset  ...  ()  (1,)  (2,)  (3,)  (4,)  (1, 2)  (1, 3)  (1, 4)  (2, 3)  (2, 4)  (3, 4)  (1, 2, 3)  (1, 2, 4)  (1, 3, 4)  (2, 3, 4)  (1, 2, 3, 4)

1.35   按給定值分組行 (itertools.groupby)

>>> from operator import itemgetter  >>> import itertools  >>> with open('contactlenses.csv', 'r') as infile:  ...     data = [line.strip().split(',') for line in infile]  ...  >>> data = data[1:]  >>> def print_data(rows):  ...     print '\n'.join('\t'.join('{: <16}'.format(s) for s in row) for row in rows)  ...   >>> print_data(data)  young               myope                   no                      reduced                 none  young               myope                   no                      normal                  soft  young               myope                   yes                     reduced                 none  young               myope                   yes                     normal                  hard  young               hypermetrope            no                      reduced                 none  young               hypermetrope            no                      normal                  soft  young               hypermetrope            yes                     reduced                 none  young               hypermetrope            yes                     normal                  hard  pre-presbyopic      myope                   no                      reduced                 none  pre-presbyopic      myope                   no                      normal                  soft  pre-presbyopic      myope                   yes                     reduced                 none  pre-presbyopic      myope                   yes                     normal                  hard  pre-presbyopic      hypermetrope            no                      reduced                 none  pre-presbyopic      hypermetrope            no                      normal                  soft  pre-presbyopic      hypermetrope            yes                     reduced                 none  pre-presbyopic      hypermetrope            yes                     normal                  none  presbyopic          myope                   no                      reduced                 none  presbyopic          myope                   no                      normal                  none  presbyopic          myope                   yes                     reduced                 none  presbyopic          myope                   yes                     normal                  hard  presbyopic          hypermetrope            no                      reduced                 none  presbyopic          hypermetrope            no                      normal                  soft  presbyopic          hypermetrope            yes                     reduced                 none  presbyopic          hypermetrope            yes                     normal                  none   >>> data.sort(key=itemgetter(-1))  >>> for value, group in itertools.groupby(data, lambda r: r[-1]):  ...     print '-----------' ...     print 'Group: ' + value  ...     print_data(group)  ...  -----------  Group: hard  young               myope                   yes                     normal                  hard  young               hypermetrope            yes                     normal                  hard  pre-presbyopic      myope                   yes                     normal                  hard  presbyopic          myope                   yes                     normal                  hard  -----------  Group: none  young               myope                   no                      reduced                 none  young               myope                   yes                     reduced                 none  young               hypermetrope            no                      reduced                 none  young               hypermetrope            yes                     reduced                 none  pre-presbyopic      myope                   no                      reduced                 none  pre-presbyopic      myope                   yes                     reduced                 none  pre-presbyopic      hypermetrope            no                      reduced                 none  pre-presbyopic      hypermetrope            yes                     reduced                 none  pre-presbyopic      hypermetrope            yes                     normal                  none  presbyopic          myope                   no                      reduced                 none  presbyopic          myope                   no                      normal                  none  presbyopic          myope                   yes                     reduced                 none  presbyopic          hypermetrope            no                      reduced                 none  presbyopic          hypermetrope            yes                     reduced                 none  presbyopic          hypermetrope            yes                     normal                  none  -----------  Group: soft  young               myope                   no                      normal                  soft  young               hypermetrope            no                      normal                  soft  pre-presbyopic      myope                   no                      normal                  soft  pre-presbyopic      hypermetrope            no                      normal                  soft  presbyopic          hypermetrope            no                      normal                  soft

上述就是小編為大家分享的Python語言的特點技巧有哪些了,如果剛好有類似的疑惑,不妨參照上述分析進行理解。如果想知道更多相關(guān)知識,歡迎關(guān)注億速云行業(yè)資訊頻道。

向AI問一下細節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI