您好,登錄后才能下訂單哦!
今天就跟大家聊聊有關(guān)Java并發(fā)編程中如何進(jìn)行從根源上解析volatile關(guān)鍵字的實現(xiàn),可能很多人都不太了解,為了讓大家更加了解,小編給大家總結(jié)了以下內(nèi)容,希望大家根據(jù)這篇文章可以有所收獲。
1、解析概覽
內(nèi)存模型的相關(guān)概念
并發(fā)編程中的三個概念
Java內(nèi)存模型
深入剖析volatile關(guān)鍵字
使用volatile關(guān)鍵字的場景
2、內(nèi)存模型的相關(guān)概念
緩存一致性問題。通常稱這種被多個線程訪問的變量為共享變量。
也就是說,如果一個變量在多個CPU中都存在緩存(一般在多線程編程時才會出現(xiàn)),那么就可能存在緩存不一致的問題。
為了解決緩存不一致性問題,通常來說有以下2種解決方法:
通過在總線加LOCK#鎖的方式
通過緩存一致性協(xié)議
這2種方式都是硬件層面上提供的方式。
上面的方式1會有一個問題,由于在鎖住總線期間,其他CPU無法訪問內(nèi)存,導(dǎo)致效率低下。
緩存一致性協(xié)議。最出名的就是Intel 的MESI協(xié)議,MESI協(xié)議保證了每個緩存中使用的共享變量的副本是一致的。它核心的思想是:當(dāng)CPU寫數(shù)據(jù)時,如果發(fā)現(xiàn)操作的變量是共享變量,即在其他CPU中也存在該變量的副本,會發(fā)出信號通知其他CPU將該變量的緩存行置為無效狀態(tài),因此當(dāng)其他CPU需要讀取這個變量時,發(fā)現(xiàn)自己緩存中緩存該變量的緩存行是無效的,那么它就會從內(nèi)存重新讀取。
3、并發(fā)編程中的三個概念
在并發(fā)編程中,我們通常會遇到以下三個問題:原子性問題,可見性問題,有序性問題。
3.1 原子性
原子性:即一個操作或者多個操作 要么全部執(zhí)行并且執(zhí)行的過程不會被任何因素打斷,要么就都不執(zhí)行。
3.2 可見性
可見性是指當(dāng)多個線程訪問同一個變量時,一個線程修改了這個變量的值,其他線程能夠立即看得到修改的值。
3.3 有序性
有序性:即程序執(zhí)行的順序按照代碼的先后順序執(zhí)行。
從代碼順序上看,語句1是在語句2前面的,那么JVM在真正執(zhí)行這段代碼的時候會保證語句1一定會在語句2前面執(zhí)行嗎?不一定,為什么呢?這里可能會發(fā)生指令重排序(Instruction Reorder)。
下面解釋一下什么是指令重排序,一般來說,處理器為了提高程序運行效率,可能會對輸入代碼進(jìn)行優(yōu)化,它不保證程序中各個語句的執(zhí)行先后順序同代碼中的順序一致,但是它會保證程序最終執(zhí)行結(jié)果和代碼順序執(zhí)行的結(jié)果是一致的。
指令重排序不會影響單個線程的執(zhí)行,但是會影響到線程并發(fā)執(zhí)行的正確性。
也就是說,要想并發(fā)程序正確地執(zhí)行,必須要保證原子性、可見性以及有序性。只要有一個沒有被保證,就有可能會導(dǎo)致程序運行不正確。
4、Java內(nèi)存模型
在Java虛擬機(jī)規(guī)范中試圖定義一種Java內(nèi)存模型(Java Memory Model,JMM)來屏蔽各個硬件平臺和操作系統(tǒng)的內(nèi)存訪問差異,以實現(xiàn)讓Java程序在各種平臺下都能達(dá)到一致的內(nèi)存訪問效果。那么Java內(nèi)存模型規(guī)定了哪些東西呢,它定義了程序中變量的訪問規(guī)則,往大一點說是定義了程序執(zhí)行的次序。注意,為了獲得較好的執(zhí)行性能,Java內(nèi)存模型并沒有限制執(zhí)行引擎使用處理器的寄存器或者高速緩存來提升指令執(zhí)行速度,也沒有限制編譯器對指令進(jìn)行重排序。也就是說,在java內(nèi)存模型中,也會存在緩存一致性問題和指令重排序的問題。
Java內(nèi)存模型規(guī)定所有的變量都是存在主存當(dāng)中(類似于前面說的物理內(nèi)存),每個線程都有自己的工作內(nèi)存(類似于前面的高速緩存)。線程對變量的所有操作都必須在工作內(nèi)存中進(jìn)行,而不能直接對主存進(jìn)行操作。并且每個線程不能訪問其他線程的工作內(nèi)存。
4.1 原子性
在Java中,對基本數(shù)據(jù)類型的變量的讀取和賦值操作是原子性操作,即這些操作是不可被中斷的,要么執(zhí)行,要么不執(zhí)行。
請分析以下哪些操作是原子性操作:
x = 10; //語句1
y = x; //語句2
x++; //語句3
x = x + 1; //語句4
其實只有語句1是原子性操作,其他三個語句都不是原子性操作。
也就是說,只有簡單的讀取、賦值(而且必須是將數(shù)字賦值給某個變量,變量之間的相互賦值不是原子操作)才是原子操作。
從上面可以看出,Java內(nèi)存模型只保證了基本讀取和賦值是原子性操作,如果要實現(xiàn)更大范圍操作的原子性,可以通過synchronized和Lock來實現(xiàn)。
4.2 可見性
對于可見性,Java提供了volatile關(guān)鍵字來保證可見性。
當(dāng)一個共享變量被volatile修飾時,它會保證修改的值會立即被更新到主存,當(dāng)有其他線程需要讀取時,它會去內(nèi)存中讀取新值。
而普通的共享變量不能保證可見性,因為普通共享變量被修改之后,什么時候被寫入主存是不確定的,當(dāng)其他線程去讀取時,此時內(nèi)存中可能還是原來的舊值,因此無法保證可見性。
另外,通過synchronized和Lock也能夠保證可見性,synchronized和Lock能保證同一時刻只有一個線程獲取鎖然后執(zhí)行同步代碼,并且在釋放鎖之前會將對變量的修改刷新到主存當(dāng)中。因此可以保證可見性。
4.3 有序性
在Java內(nèi)存模型中,允許編譯器和處理器對指令進(jìn)行重排序,但是重排序過程不會影響到單線程程序的執(zhí)行,卻會影響到多線程并發(fā)執(zhí)行的正確性。
在Java里面,可以通過volatile關(guān)鍵字來保證一定的“有序性”(它能禁止進(jìn)行指令重排序)。另外可以通過synchronized和Lock來保證有序性,很顯然,synchronized和Lock保證每個時刻是有一個線程執(zhí)行同步代碼,相當(dāng)于是讓線程順序執(zhí)行同步代碼,自然就保證了有序性。
另外,Java內(nèi)存模型具備一些先天的“有序性”,即不需要通過任何手段就能夠得到保證的有序性,這個通常也稱為 happens-before 原則。如果兩個操作的執(zhí)行次序無法從happens-before原則推導(dǎo)出來,那么它們就不能保證它們的有序性,虛擬機(jī)可以隨意地對它們進(jìn)行重排序。
下面就來具體介紹下happens-before原則(先行發(fā)生原則):
程序次序規(guī)則:一個線程內(nèi),按照代碼順序,書寫在前面的操作先行發(fā)生于書寫在后面的操作
鎖定規(guī)則:一個unLock操作先行發(fā)生于后面對同一個鎖額lock操作
volatile變量規(guī)則:對一個變量的寫操作先行發(fā)生于后面對這個變量的讀操作
傳遞規(guī)則:如果操作A先行發(fā)生于操作B,而操作B又先行發(fā)生于操作C,則可以得出操作A先行發(fā)生于操作C
線程啟動規(guī)則:Thread對象的start()方法先行發(fā)生于此線程的每個一個動作
線程中斷規(guī)則:對線程interrupt()方法的調(diào)用先行發(fā)生于被中斷線程的代碼檢測到中斷事件的發(fā)生
線程終結(jié)規(guī)則:線程中所有的操作都先行發(fā)生于線程的終止檢測,我們可以通過Thread.join()方法結(jié)束、Thread.isAlive()的返回值手段檢測到線程已經(jīng)終止執(zhí)行
對象終結(jié)規(guī)則:一個對象的初始化完成先行發(fā)生于他的finalize()方法的開始
這8條規(guī)則中,前4條規(guī)則是比較重要的,后4條規(guī)則都是顯而易見的。
下面我們來解釋一下前4條規(guī)則:
對于程序次序規(guī)則來說,我的理解就是一段程序代碼的執(zhí)行在單個線程中看起來是有序的。注意,雖然這條規(guī)則中提到“書寫在前面的操作先行發(fā)生于書寫在后面的操作”,這個應(yīng)該是程序看起來執(zhí)行的順序是按照代碼順序執(zhí)行的,因為虛擬機(jī)可能會對程序代碼進(jìn)行指令重排序。雖然進(jìn)行重排序,但是最終執(zhí)行的結(jié)果是與程序順序執(zhí)行的結(jié)果一致的,它只會對不存在數(shù)據(jù)依賴性的指令進(jìn)行重排序。因此,在單個線程中,程序執(zhí)行看起來是有序執(zhí)行的,這一點要注意理解。事實上,這個規(guī)則是用來保證程序在單線程中執(zhí)行結(jié)果的正確性,但無法保證程序在多線程中執(zhí)行的正確性。
第二條規(guī)則也比較容易理解,也就是說無論在單線程中還是多線程中,同一個鎖如果出于被鎖定的狀態(tài),那么必須先對鎖進(jìn)行了釋放操作,后面才能繼續(xù)進(jìn)行l(wèi)ock操作。
第三條規(guī)則是一條比較重要的規(guī)則,也是后文將要重點講述的內(nèi)容。直觀地解釋就是,如果一個線程先去寫一個變量,然后一個線程去進(jìn)行讀取,那么寫入操作肯定會先行發(fā)生于讀操作。
第四條規(guī)則實際上就是體現(xiàn)happens-before原則具備傳遞性。
5、深入剖析volatile關(guān)鍵字
5.1 Volatile關(guān)鍵字的兩層語義
一旦一個共享變量(類的成員變量、類的靜態(tài)成員變量)被volatile修飾之后,那么就具備了兩層語義:
保證了不同線程對這個變量進(jìn)行操作時的可見性,即一個線程修改了某個變量的值,這新值對其他線程來說是立即可見的。
禁止進(jìn)行指令重排序。
關(guān)于可見性,先看一段代碼,假如線程1先執(zhí)行,線程2后執(zhí)行:
//線程1 boolean stop = false; while(!stop){ doSomething(); } //線程2 stop = true;
這段代碼是很典型的一段代碼,很多人在中斷線程時可能都會采用這種標(biāo)記辦法。但是事實上,這段代碼會完全運行正確么?即一定會將線程中斷么?不一定,也許在大多數(shù)時候,這個代碼能夠把線程中斷,但是也有可能會導(dǎo)致無法中斷線程(雖然這個可能性很小,但是只要一旦發(fā)生這種情況就會造成死循環(huán)了)。
下面解釋一下這段代碼為何有可能導(dǎo)致無法中斷線程。在前面已經(jīng)解釋過,每個線程在運行過程中都有自己的工作內(nèi)存,那么線程1在運行的時候,會將stop變量的值拷貝一份放在自己的工作內(nèi)存當(dāng)中。
那么當(dāng)線程2更改了stop變量的值之后,但是還沒來得及寫入主存當(dāng)中,線程2轉(zhuǎn)去做其他事情了,那么線程1由于不知道線程2對stop變量的更改,因此還會一直循環(huán)下去。
但是用volatile修飾之后就變得不一樣了:
***:使用volatile關(guān)鍵字會強(qiáng)制將修改的值立即寫入主存;
第二:使用volatile關(guān)鍵字的話,當(dāng)線程2進(jìn)行修改時,會導(dǎo)致線程1的工作內(nèi)存中緩存變量stop的緩存行無效(反映到硬件層的話,就是CPU的L1或者L2緩存中對應(yīng)的緩存行無效);
第三:由于線程1的工作內(nèi)存中緩存變量stop的緩存行無效,所以線程1再次讀取變量stop的值時會去主存讀取。
那么在線程2修改stop值時(當(dāng)然這里包括2個操作,修改線程2工作內(nèi)存中的值,然后將修改后的值寫入內(nèi)存),會使得線程1的工作內(nèi)存中緩存變量stop的緩存行無效,然后線程1讀取時,發(fā)現(xiàn)自己的緩存行無效,它會等待緩存行對應(yīng)的主存地址被更新之后,然后去對應(yīng)的主存讀取***的值。
那么線程1讀取到的就是***的正確的值。
5.2 volatile保證原子性嗎?
volatile不保證原子性,下面看一個實例。
public class Test { public volatile int inc = 0; public void increase() { inc++; } public static void main(String[] args) { final Test test = new Test(); for(int i=0;i<10;i++){ new Thread(){ public void run() { for(int j=0;j<1000;j++) test.increase(); }; }.start(); } while(Thread.activeCount()>1) //保證前面的線程都執(zhí)行完 Thread.yield(); System.out.println(test.inc); } }
大家想一下這段程序的輸出結(jié)果是多少?也許有些朋友認(rèn)為是10000。但是事實上運行它會發(fā)現(xiàn)每次運行結(jié)果都不一致,都是一個小于10000的數(shù)字。
這里面就有一個誤區(qū)了,volatile關(guān)鍵字能保證可見性沒有錯,但是上面的程序錯在沒能保證原子性??梢娦灾荒鼙WC每次讀取的是***的值,但是volatile沒辦法保證對變量的操作的原子性。
在前面已經(jīng)提到過,自增操作是不具備原子性的,它包括讀取變量的原始值、進(jìn)行加1操作、寫入工作內(nèi)存。那么就是說自增操作的三個子操作可能會分割開執(zhí)行,就有可能導(dǎo)致下面這種情況出現(xiàn):
假如某個時刻變量inc的值為10。
線程1對變量進(jìn)行自增操作,線程1先讀取了變量inc的原始值,然后線程1被阻塞了;
然后線程2對變量進(jìn)行自增操作,線程2也去讀取變量inc的原始值,由于線程1只是對變量inc進(jìn)行讀取操作,而沒有對變量進(jìn)行修改操作,所以不會導(dǎo)致線程2的工作內(nèi)存中緩存變量inc的緩存行無效,所以線程2會直接去主存讀取inc的值,發(fā)現(xiàn)inc的值時10,然后進(jìn)行加1操作,并把11寫入工作內(nèi)存,***寫入主存。
然后線程1接著進(jìn)行加1操作,由于已經(jīng)讀取了inc的值,注意此時在線程1的工作內(nèi)存中inc的值仍然為10,所以線程1對inc進(jìn)行加1操作后inc的值為11,然后將11寫入工作內(nèi)存,***寫入主存。
那么兩個線程分別進(jìn)行了一次自增操作后,inc只增加了1。
解釋到這里,可能有朋友會有疑問,不對啊,前面不是保證一個變量在修改volatile變量時,會讓緩存行無效嗎?然后其他線程去讀就會讀到新的值,對,這個沒錯。這個就是上面的happens-before規(guī)則中的volatile變量規(guī)則,但是要注意,線程1對變量進(jìn)行讀取操作之后,被阻塞了的話,并沒有對inc值進(jìn)行修改。然后雖然volatile能保證線程2對變量inc的值讀取是從內(nèi)存中讀取的,但是線程1沒有進(jìn)行修改,所以線程2根本就不會看到修改的值。
根源就在這里,自增操作不是原子性操作,而且volatile也無法保證對變量的任何操作都是原子性的。
把上面的代碼改成以下任何一種都可以達(dá)到效果:
采用synchronized:
public class Test { public int inc = 0; public synchronized void increase() { inc++; } public static void main(String[] args) { final Test test = new Test(); for(int i=0;i<10;i++){ new Thread(){ public void run() { for(int j=0;j<1000;j++) test.increase(); }; }.start(); } while(Thread.activeCount()>1) //保證前面的線程都執(zhí)行完 Thread.yield(); System.out.println(test.inc); } }
采用Lock:
public class Test { public int inc = 0; Lock lock = new ReentrantLock(); public void increase() { lock.lock(); try { inc++; } finally{ lock.unlock(); } } public static void main(String[] args) { final Test test = new Test(); for(int i=0;i<10;i++){ new Thread(){ public void run() { for(int j=0;j<1000;j++) test.increase(); }; }.start(); } while(Thread.activeCount()>1) //保證前面的線程都執(zhí)行完 Thread.yield(); System.out.println(test.inc); } }
采用AtomicInteger:
public class Test { public AtomicInteger inc = new AtomicInteger(); public void increase() { inc.getAndIncrement(); } public static void main(String[] args) { final Test test = new Test(); for(int i=0;i<10;i++){ new Thread(){ public void run() { for(int j=0;j<1000;j++) test.increase(); }; }.start(); } while(Thread.activeCount()>1) //保證前面的線程都執(zhí)行完 Thread.yield(); System.out.println(test.inc); } }
在java 1.5的java.util.concurrent.atomic包下提供了一些原子操作類,即對基本數(shù)據(jù)類型的 自增(加1操作),自減(減1操作)、以及加法操作(加一個數(shù)),減法操作(減一個數(shù))進(jìn)行了封裝,保證這些操作是原子性操作。atomic是利用CAS來實現(xiàn)原子性操作的(Compare And Swap),CAS實際上是利用處理器提供的CMPXCHG指令實現(xiàn)的,而處理器執(zhí)行CMPXCHG指令是一個原子性操作。
5.3 volatile能保證有序性嗎?
volatile能在一定程度上保證有序性。
volatile關(guān)鍵字禁止指令重排序有兩層意思:
1)當(dāng)程序執(zhí)行到volatile變量的讀操作或者寫操作時,在其前面的操作的更改肯定全部已經(jīng)進(jìn)行,且結(jié)果已經(jīng)對后面的操作可見;在其后面的操作肯定還沒有進(jìn)行;
2)在進(jìn)行指令優(yōu)化時,不能將在對volatile變量訪問的語句放在其后面執(zhí)行,也不能把volatile變量后面的語句放到其前面執(zhí)行。
舉個例子:
//x、y為非volatile變量 //flag為volatile變量 x = 2; //語句1 y = 0; //語句2 flag = true; //語句3 x = 4; //語句4 y = -1; //語句5
由于flag變量為volatile變量,那么在進(jìn)行指令重排序的過程的時候,不會將語句3放到語句1、語句2前面,也不會講語句3放到語句4、語句5后面。但是要注意語句1和語句2的順序、語句4和語句5的順序是不作任何保證的。
并且volatile關(guān)鍵字能保證,執(zhí)行到語句3時,語句1和語句2必定是執(zhí)行完畢了的,且語句1和語句2的執(zhí)行結(jié)果對語句3、語句4、語句5是可見的。
5.4 volatile的原理和實現(xiàn)機(jī)制
這里探討一下volatile到底如何保證可見性和禁止指令重排序的。
下面這段話摘自《深入理解Java虛擬機(jī)》:
“觀察加入volatile關(guān)鍵字和沒有加入volatile關(guān)鍵字時所生成的匯編代碼發(fā)現(xiàn),加入volatile關(guān)鍵字時,會多出一個lock前綴指令”
lock前綴指令實際上相當(dāng)于一個內(nèi)存屏障(也成內(nèi)存柵欄),內(nèi)存屏障會提供3個功能:
它確保指令重排序時不會把其后面的指令排到內(nèi)存屏障之前的位置,也不會把前面的指令排到內(nèi)存屏障的后面;即在執(zhí)行到內(nèi)存屏障這句指令時,在它前面的操作已經(jīng)全部完成;
它會強(qiáng)制將對緩存的修改操作立即寫入主存;
如果是寫操作,它會導(dǎo)致其他CPU中對應(yīng)的緩存行無效。
6、使用volatile關(guān)鍵字的場景
synchronized關(guān)鍵字是防止多個線程同時執(zhí)行一段代碼,那么就會很影響程序執(zhí)行效率,而volatile關(guān)鍵字在某些情況下性能要優(yōu)于synchronized,但是要注意volatile關(guān)鍵字是無法替代synchronized關(guān)鍵字的,因為volatile關(guān)鍵字無法保證操作的原子性。通常來說,使用volatile必須具備以下2個條件:
對變量的寫操作不依賴于當(dāng)前值(比如++操作,上面有例子)
該變量沒有包含在具有其他變量的不變式中
實際上,這些條件表明,可以被寫入 volatile 變量的這些有效值獨立于任何程序的狀態(tài),包括變量的當(dāng)前狀態(tài)。
事實上,我的理解就是上面的2個條件需要保證操作是原子性操作,才能保證使用volatile關(guān)鍵字的程序在并發(fā)時能夠正確執(zhí)行。
下面列舉幾個Java中使用volatile的幾個場景。
狀態(tài)標(biāo)記量
volatile boolean flag = false; while(!flag){ doSomething(); } public void setFlag() { flag = true; } volatile boolean inited = false; //線程1: context = loadContext(); inited = true; //線程2: while(!inited ){ sleep() } doSomethingwithconfig(context);
double check
class Singleton{ private volatile static Singleton instance = null; private Singleton() { } public static Singleton getInstance() { if(instance==null) { synchronized (Singleton.class) { if(instance==null) instance = new Singleton(); } } return instance; } }
看完上述內(nèi)容,你們對Java并發(fā)編程中如何進(jìn)行從根源上解析volatile關(guān)鍵字的實現(xiàn)有進(jìn)一步的了解嗎?如果還想了解更多知識或者相關(guān)內(nèi)容,請關(guān)注億速云行業(yè)資訊頻道,感謝大家的支持。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。