溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶服務(wù)條款》

Python有哪些開發(fā)技巧

發(fā)布時(shí)間:2021-11-02 09:23:35 來源:億速云 閱讀:145 作者:iii 欄目:編程語言

這篇文章主要講解了“Python有哪些開發(fā)技巧”,文中的講解內(nèi)容簡單清晰,易于學(xué)習(xí)與理解,下面請(qǐng)大家跟著小編的思路慢慢深入,一起來研究和學(xué)習(xí)“Python有哪些開發(fā)技巧”吧!

 1. 如何在運(yùn)行狀態(tài)查看源代碼?

查看函數(shù)的源代碼,我們通常會(huì)使用 IDE 來完成。

比如在 PyCharm 中,你可以 Ctrl + 鼠標(biāo)點(diǎn)擊 進(jìn)入函數(shù)的源代碼。

那如果沒有 IDE 呢?

當(dāng)我們想使用一個(gè)函數(shù)時(shí),如何知道這個(gè)函數(shù)需要接收哪些參數(shù)呢?

當(dāng)我們?cè)谑褂煤瘮?shù)時(shí)出現(xiàn)問題的時(shí)候,如何通過閱讀源代碼來排查問題所在呢?

這時(shí)候,我們可以使用 inspect 來代替 IDE 幫助你完成這些事

# demo.py import inspect   def add(x, y):     return x + y  print("===================") print(inspect.getsource(add))

運(yùn)行結(jié)果如下

$ python demo.py =================== def add(x, y):     return x + y

2. 如何關(guān)閉異常自動(dòng)關(guān)聯(lián)上下文?

當(dāng)你在處理異常時(shí),由于處理不當(dāng)或者其他問題,再次拋出另一個(gè)異常時(shí),往外拋出的異常也會(huì)攜帶原始的異常信息。

就像這樣子。

try:     print(1 / 0) except Exception as exc:     raise RuntimeError("Something bad happened")

從輸出可以看到兩個(gè)異常信息

Traceback (most recent call last):   File "demo.py", line 2, in <module>     print(1 / 0) ZeroDivisionError: division by zero  During handling of the above exception, another exception occurred:  Traceback (most recent call last):   File "demo.py", line 4, in <module>     raise RuntimeError("Something bad happened") RuntimeError: Something bad happened

如果在異常處理程序或 finally 塊中引發(fā)異常,默認(rèn)情況下,異常機(jī)制會(huì)隱式工作會(huì)將先前的異常附加為新異常的 __context__屬性。這就是  Python 默認(rèn)開啟的自動(dòng)關(guān)聯(lián)異常上下文。

如果你想自己控制這個(gè)上下文,可以加個(gè) from 關(guān)鍵字(from  語法會(huì)有個(gè)限制,就是第二個(gè)表達(dá)式必須是另一個(gè)異常類或?qū)嵗?,來表明你的新異常是直接由哪個(gè)異常引起的。

try:     print(1 / 0) except Exception as exc:     raise RuntimeError("Something bad happened") from exc

輸出如下

Traceback (most recent call last):   File "demo.py", line 2, in <module>     print(1 / 0) ZeroDivisionError: division by zero  The above exception was the direct cause of the following exception:  Traceback (most recent call last):   File "demo.py", line 4, in <module>     raise RuntimeError("Something bad happened") from exc RuntimeError: Something bad happened

當(dāng)然,你也可以通過with_traceback()方法為異常設(shè)置上下文__context__屬性,這也能在traceback更好的顯示異常信息。

try:     print(1 / 0) except Exception as exc:     raise RuntimeError("bad thing").with_traceback(exc)

最后,如果我想徹底關(guān)閉這個(gè)自動(dòng)關(guān)聯(lián)異常上下文的機(jī)制?有什么辦法呢?

可以使用 raise...from None,從下面的例子上看,已經(jīng)沒有了原始異常

$ cat demo.py try:     print(1 / 0) except Exception as exc:     raise RuntimeError("Something bad happened") from None $ $ python demo.py Traceback (most recent call last):   File "demo.py", line 4, in <module>     raise RuntimeError("Something bad happened") from None RuntimeError: Something bad happened (PythonCodingTime)

03. 最快查看包搜索路徑的方式

當(dāng)你使用 import 導(dǎo)入一個(gè)包或模塊時(shí),Python 會(huì)去一些目錄下查找,而這些目錄是有優(yōu)先級(jí)順序的,正常人會(huì)使用  sys.path 查看。

>>> import sys >>> from pprint import pprint    >>> pprint(sys.path) ['',  '/usr/local/Python3.7/lib/python37.zip',  '/usr/local/Python3.7/lib/python3.7',  '/usr/local/Python3.7/lib/python3.7/lib-dynload',  '/home/wangbm/.local/lib/python3.7/site-packages',  '/usr/local/Python3.7/lib/python3.7/site-packages'] >>>

那有沒有更快的方式呢?

我這有一種連 console 模式都不用進(jìn)入的方法呢?

你可能會(huì)想到這種,但這本質(zhì)上與上面并無區(qū)別

[wangbm@localhost ~]$ python -c "print('\n'.join(__import__('sys').path))"  /usr/lib/python2.7/site-packages/pip-18.1-py2.7.egg /usr/lib/python2.7/site-packages/redis-3.0.1-py2.7.egg /usr/lib64/python27.zip /usr/lib64/python2.7 /usr/lib64/python2.7/plat-linux2 /usr/lib64/python2.7/lib-tk /usr/lib64/python2.7/lib-old /usr/lib64/python2.7/lib-dynload /home/wangbm/.local/lib/python2.7/site-packages /usr/lib64/python2.7/site-packages /usr/lib64/python2.7/site-packages/gtk-2.0 /usr/lib/python2.7/site-packages

這里我要介紹的是比上面兩種都方便的多的方法,一行命令即可解決

[wangbm@localhost ~]$ python3 -m site sys.path = [     '/home/wangbm',     '/usr/local/Python3.7/lib/python37.zip',     '/usr/local/Python3.7/lib/python3.7',     '/usr/local/Python3.7/lib/python3.7/lib-dynload',     '/home/wangbm/.local/lib/python3.7/site-packages',     '/usr/local/Python3.7/lib/python3.7/site-packages', ] USER_BASE: '/home/wangbm/.local' (exists) USER_SITE: '/home/wangbm/.local/lib/python3.7/site-packages' (exists) ENABLE_USER_SITE: True

從輸出你可以發(fā)現(xiàn),這個(gè)列的路徑會(huì)比 sys.path 更全,它包含了用戶環(huán)境的目錄。

4. 將嵌套 for 循環(huán)寫成單行

我們經(jīng)常會(huì)如下這種嵌套的 for 循環(huán)代碼

list1 = range(1,3) list2 = range(4,6) list3 = range(7,9) for item1 in list1:     for item2 in list2:        for item3 in list3:            print(item1+item2+item3)

這里僅僅是三個(gè) for 循環(huán),在實(shí)際編碼中,有可能會(huì)有更層。

這樣的代碼,可讀性非常的差,很多人不想這么寫,可又沒有更好的寫法。

這里介紹一種我常用的寫法,使用 itertools 這個(gè)庫來實(shí)現(xiàn)更優(yōu)雅易讀的代碼。

from itertools import product list1 = range(1,3) list2 = range(4,6) list3 = range(7,9) for item1,item2,item3 in product(list1, list2, list3):     print(item1+item2+item3)

輸出如下

$ python demo.py 12 13 13 14 13 14 14 15

5. 如何使用 print 輸出日志

初學(xué)者喜歡使用 print 來調(diào)試代碼,并記錄程序運(yùn)行過程。

但是 print 只會(huì)將內(nèi)容輸出到終端上,不能持久化到日志文件中,并不利于問題的排查。

如果你熱衷于使用 print 來調(diào)試代碼(雖然這并不是最佳做法),記錄程序運(yùn)行過程,那么下面介紹的這個(gè) print 用法,可能會(huì)對(duì)你有用。

Python 3 中的 print 作為一個(gè)函數(shù),由于可以接收更多的參數(shù),所以功能變?yōu)楦訌?qiáng)大,指定一些參數(shù)可以將 print  的內(nèi)容輸出到日志文件中

代碼如下:

>>> with open('test.log', mode='w') as f: ...     print('hello, python', file=f, flush=True) >>> exit()  $ cat test.log hello, python

6. 如何快速計(jì)算函數(shù)運(yùn)行時(shí)間

計(jì)算一個(gè)函數(shù)的運(yùn)行時(shí)間,你可能會(huì)這樣子做

import time  start = time.time()  # run the function  end = time.time() print(end-start)

你看看你為了計(jì)算函數(shù)運(yùn)行時(shí)間,寫了幾行代碼了。

有沒有一種方法可以更方便的計(jì)算這個(gè)運(yùn)行時(shí)間呢?

有。

有一個(gè)內(nèi)置模塊叫 timeit

使用它,只用一行代碼即可

import time import timeit  def run_sleep(second):     print(second)     time.sleep(second)  # 只用這一行 print(timeit.timeit(lambda :run_sleep(2), number=5))

運(yùn)行結(jié)果如下

2 2 2 2 2 10.020059824

7. 利用自帶的緩存機(jī)制提高效率

緩存是一種將定量數(shù)據(jù)加以保存,以備迎合后續(xù)獲取需求的處理方式,旨在加快數(shù)據(jù)獲取的速度。

數(shù)據(jù)的生成過程可能需要經(jīng)過計(jì)算,規(guī)整,遠(yuǎn)程獲取等操作,如果是同一份數(shù)據(jù)需要多次使用,每次都重新生成會(huì)大大浪費(fèi)時(shí)間。所以,如果將計(jì)算或者遠(yuǎn)程請(qǐng)求等操作獲得的數(shù)據(jù)緩存下來,會(huì)加快后續(xù)的數(shù)據(jù)獲取需求。

為了實(shí)現(xiàn)這個(gè)需求,Python 3.2 + 中給我們提供了一個(gè)機(jī)制,可以很方便的實(shí)現(xiàn),而不需要你去寫這樣的邏輯代碼。

這個(gè)機(jī)制實(shí)現(xiàn)于 functool 模塊中的 lru_cache 裝飾器。

@functools.lru_cache(maxsize=None, typed=False)

參數(shù)解讀:

  • maxsize:最多可以緩存多少個(gè)此函數(shù)的調(diào)用結(jié)果,如果為None,則無限制,設(shè)置為 2 的冪時(shí),性能最佳

  • typed:若為 True,則不同參數(shù)類型的調(diào)用將分別緩存。

舉個(gè)例子

from functools import lru_cache  @lru_cache(None) def add(x, y):     print("calculating: %s + %s" % (x, y))     return x + y  print(add(1, 2)) print(add(1, 2)) print(add(2, 3))

輸出如下,可以看到第二次調(diào)用并沒有真正的執(zhí)行函數(shù)體,而是直接返回緩存里的結(jié)果

calculating: 1 + 2 3 3 calculating: 2 + 3 5

下面這個(gè)是經(jīng)典的斐波那契數(shù)列,當(dāng)你指定的 n 較大時(shí),會(huì)存在大量的重復(fù)計(jì)算

def fib(n):     if n < 2:         return n     return fib(n - 2) + fib(n - 1)

第六點(diǎn)介紹的 timeit,現(xiàn)在可以用它來測(cè)試一下到底可以提高多少的效率。

不使用 lru_cache 的情況下,運(yùn)行時(shí)間 31 秒

import timeit  def fib(n):     if n < 2:         return n     return fib(n - 2) + fib(n - 1)    print(timeit.timeit(lambda :fib(40), number=1)) # output: 31.2725698948

由于使用了 lru_cache 后,運(yùn)行速度實(shí)在太快了,所以我將 n 值由 30 調(diào)到 500,可即使是這樣,運(yùn)行時(shí)間也才 0.0004  秒。提高速度非常顯著。

import timeit from functools import lru_cache  @lru_cache(None) def fib(n):     if n < 2:         return n     return fib(n - 2) + fib(n - 1)  print(timeit.timeit(lambda :fib(500), number=1)) # output: 0.0004921059880871326

8. 在程序退出前執(zhí)行代碼的技巧

使用 atexit 這個(gè)內(nèi)置模塊,可以很方便的注冊(cè)退出函數(shù)。

不管你在哪個(gè)地方導(dǎo)致程序崩潰,都會(huì)執(zhí)行那些你注冊(cè)過的函數(shù)。

示例如下

Python有哪些開發(fā)技巧

如果clean()函數(shù)有參數(shù),那么你可以不用裝飾器,而是直接調(diào)用atexit.register(clean_1, 參數(shù)1, 參數(shù)2,  參數(shù)3='xxx')。

可能你有其他方法可以處理這種需求,但肯定比上不使用 atexit 來得優(yōu)雅,來得方便,并且它很容易擴(kuò)展。

但是使用 atexit 仍然有一些局限性,比如:

  • 如果程序是被你沒有處理過的系統(tǒng)信號(hào)殺死的,那么注冊(cè)的函數(shù)無法正常執(zhí)行。

  • 如果發(fā)生了嚴(yán)重的 Python 內(nèi)部錯(cuò)誤,你注冊(cè)的函數(shù)無法正常執(zhí)行。

  • 如果你手動(dòng)調(diào)用了os._exit(),你注冊(cè)的函數(shù)無法正常執(zhí)行。

9. 實(shí)現(xiàn)類似 defer 的延遲調(diào)用

在 Golang 中有一種延遲調(diào)用的機(jī)制,關(guān)鍵字是 defer,例如下面的示例

import "fmt"  func myfunc() {     fmt.Println("B") }  func main() {     defer myfunc()     fmt.Println("A") }

輸出如下,myfunc 的調(diào)用會(huì)在函數(shù)返回前一步完成,即使你將 myfunc 的調(diào)用寫在函數(shù)的第一行,這就是延遲調(diào)用。

A B

那么在 Python 中否有這種機(jī)制呢?

當(dāng)然也有,只不過并沒有 Golang 這種簡便。

在 Python 可以使用 上下文管理器 達(dá)到這種效果

import contextlib  def callback():     print('B')  with contextlib.ExitStack() as stack:     stack.callback(callback)     print('A')

輸出如下

A B

10. 如何流式讀取數(shù)G超大文件

使用 with...open... 可以從一個(gè)文件中讀取數(shù)據(jù),這是所有 Python 開發(fā)者都非常熟悉的操作。

但是如果你使用不當(dāng),也會(huì)帶來很大的麻煩。

比如當(dāng)你使用了 read 函數(shù),其實(shí) Python 會(huì)將文件的內(nèi)容一次性的全部載入內(nèi)存中,如果文件有 10  個(gè)G甚至更多,那么你的電腦就要消耗的內(nèi)存非常巨大。

# 一次性讀取 with open("big_file.txt", "r") as fp:     content = fp.read()

對(duì)于這個(gè)問題,你也許會(huì)想到使用 readline 去做一個(gè)生成器來逐行返回。

def read_from_file(filename):     with open(filename, "r") as fp:         yield fp.readline()

可如果這個(gè)文件內(nèi)容就一行呢,一行就 10個(gè)G,其實(shí)你還是會(huì)一次性讀取全部內(nèi)容。

最優(yōu)雅的解決方法是,在使用 read 方法時(shí),指定每次只讀取固定大小的內(nèi)容,比如下面的代碼中,每次只讀取 8kb 返回。

def read_from_file(filename, block_size = 1024 * 8):     with open(filename, "r") as fp:         while True:             chunk = fp.read(block_size)             if not chunk:                 break              yield chunk

上面的代碼,功能上已經(jīng)沒有問題了,但是代碼看起來代碼還是有些臃腫。

借助偏函數(shù) 和 iter 函數(shù)可以優(yōu)化一下代碼

from functools import partial  def read_from_file(filename, block_size = 1024 * 8):     with open(filename, "r") as fp:         for chunk in iter(partial(fp.read, block_size), ""):             yield chunk

感謝各位的閱讀,以上就是“Python有哪些開發(fā)技巧”的內(nèi)容了,經(jīng)過本文的學(xué)習(xí)后,相信大家對(duì)Python有哪些開發(fā)技巧這一問題有了更深刻的體會(huì),具體使用情況還需要大家實(shí)踐驗(yàn)證。這里是億速云,小編將為大家推送更多相關(guān)知識(shí)點(diǎn)的文章,歡迎關(guān)注!

向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI