溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶服務(wù)條款》

如何用PyTorch進(jìn)行語義分割

發(fā)布時(shí)間:2021-08-27 16:52:03 來源:億速云 閱讀:197 作者:chen 欄目:編程語言

本篇內(nèi)容主要講解“如何用PyTorch進(jìn)行語義分割”,感興趣的朋友不妨來看看。本文介紹的方法操作簡(jiǎn)單快捷,實(shí)用性強(qiáng)。下面就讓小編來帶大家學(xué)習(xí)“如何用PyTorch進(jìn)行語義分割”吧!

預(yù)設(shè)置

在開始訓(xùn)練之前,得首先設(shè)置一下庫(kù)、數(shù)據(jù)集等。

庫(kù)準(zhǔn)備

pip install -r requirements.txt

下載數(shù)據(jù)集

教程使用的是來自Cityscapes的數(shù)據(jù)集MiniCity Dataset。

數(shù)據(jù)集的簡(jiǎn)單數(shù)據(jù)分析

將各基準(zhǔn)類別進(jìn)行輸入:

如何用PyTorch進(jìn)行語義分割

之后,便從0-18計(jì)數(shù),對(duì)各類別進(jìn)行像素標(biāo)記:

如何用PyTorch進(jìn)行語義分割

使用deeplab v3進(jìn)行基線測(cè)試,結(jié)果發(fā)現(xiàn)次要類別的IoU特別低,這樣會(huì)導(dǎo)致難以跟背景進(jìn)行區(qū)分。

如下圖中所示的墻、柵欄、公共汽車、火車等。

如何用PyTorch進(jìn)行語義分割

分析結(jié)論:數(shù)據(jù)集存在嚴(yán)重的類別不平衡問題。

訓(xùn)練基準(zhǔn)模型

使用來自torchvision的DeepLabV3進(jìn)行訓(xùn)練。

硬件為4個(gè)RTX 2080 Ti GPU (11GB x 4),如果只有1個(gè)GPU或較小的GPU內(nèi)存,請(qǐng)使用較小的批處理大?。?lt; = 8)。

python baseline.py --save_path baseline_run_deeplabv3_resnet50 --crop_size 576 1152 --batch_size 8;  python baseline.py --save_path baseline_run_deeplabv3_resnet101 --model DeepLabv3_resnet101 --train_size 512 1024 --test_size 512 1024 --crop_size 384 768 --batch_size 8;

 損失函數(shù)

有3種損失函數(shù)可供選擇,分別是:交叉熵?fù)p失函數(shù)(Cross-Entropy Loss)、類別加權(quán)交叉熵?fù)p失函數(shù)(Class-Weighted Cross Entropy Loss)和焦點(diǎn)損失函數(shù)(Focal Loss)。

交叉熵?fù)p失函數(shù),常用在大多數(shù)語義分割場(chǎng)景,但它有一個(gè)明顯的缺點(diǎn),那就是對(duì)于只用分割前景和背景的時(shí)候,當(dāng)前景像素的數(shù)量遠(yuǎn)遠(yuǎn)小于背景像素的數(shù)量時(shí),模型嚴(yán)重偏向背景,導(dǎo)致效果不好。

# Cross Entropy Loss  python baseline.py --save_path baseline_run_deeplabv3_resnet50 --crop_size 576 1152 --batch_size 8;

類別加權(quán)交叉熵?fù)p失函數(shù)是在交叉熵?fù)p失函數(shù)的基礎(chǔ)上為每一個(gè)類別添加了一個(gè)權(quán)重參數(shù),使其在樣本數(shù)量不均衡的情況下可以獲得更好的效果。

# Weighted Cross Entropy Loss  python baseline.py --save_path baseline_run_deeplabv3_resnet50_wce --crop_size 576 1152 --batch_size 8 --loss weighted_ce;

焦點(diǎn)損失函數(shù)則更進(jìn)一步,用來解決難易樣本數(shù)量不平衡。

# Focal Loss  python baseline.py --save_path baseline_run_deeplabv3_resnet50_focal --crop_size 576 1152 --batch_size 8 --loss focal --focal_gamma 2.0;

歸一化層

有4種歸一化方法:BN(Batch Normalization)、IN(Instance Normalization)、GN(Group Normalization)和EvoNorm(Evolving Normalization)。

如何用PyTorch進(jìn)行語義分割

BN是在batch上,對(duì)N、H、W做歸一化,而保留通道 C 的維度。BN對(duì)較小的batch size效果不好。

# Batch Normalization  python baseline.py --save_path baseline_run_deeplabv3_resnet50 --crop_size 576 1152 --batch_size 8;

IN在圖像像素上,對(duì)H、W做歸一化,用在風(fēng)格化遷移。

# Instance Normalization  python baseline.py --save_path baseline_run_deeplabv3_resnet50_instancenorm --crop_size 576 1152 --batch_size 8 --norm instance;

GN將通道分組,然后再做歸一化。

# Group Normalization  python baseline.py --save_path baseline_run_deeplabv3_resnet50_groupnorm --crop_size 576 1152 --batch_size 8 --norm group;

EvoNorm則是4月份由谷歌和DeepMind 聯(lián)合發(fā)布的一項(xiàng)新技術(shù)。實(shí)驗(yàn)證明,EvoNorms 在多個(gè)圖像分類模型上效果顯著,而且還能很好地遷移到 Mask R-CNN 模型和 BigGAN。

# Evolving Normalization  python baseline.py --save_path baseline_run_deeplabv3_resnet50_evonorm --crop_size 576 1152 --batch_size 8 --norm evo;

數(shù)據(jù)增強(qiáng)

2種數(shù)據(jù)增強(qiáng)技術(shù):CutMix、Copy Blob。

  •  CutMix

將一部分區(qū)域cut掉但不填充0像素,而是隨機(jī)填充訓(xùn)練集中的其他數(shù)據(jù)的區(qū)域像素值,分類結(jié)果按一定的比例分配。

如何用PyTorch進(jìn)行語義分割

而在這里,則是在原有CutMix的基礎(chǔ)上,引入了語義分割。

# CutMix Augmentation  python baseline.py --save_path baseline_run_deeplabv3_resnet50_cutmix --crop_size 576 1152 --batch_size 8 --cutmix;
  •  Copy Blob

在 Blob 存儲(chǔ)的基礎(chǔ)上構(gòu)建,并通過Copy的方式增強(qiáng)了性能。

如何用PyTorch進(jìn)行語義分割

另外,如果要解決前面所提到的類別不平衡問題,則可以使用視覺歸納優(yōu)先的CopyBlob進(jìn)行增強(qiáng)。

# CopyBlob Augmentation  python baseline.py --save_path baseline_run_deeplabv3_resnet50_copyblob --crop_size 576 1152 --batch_size 8 --copyblob;

推理

訓(xùn)練結(jié)束后,對(duì)訓(xùn)練完成的模型進(jìn)行評(píng)估。

python baseline.py --save_path baseline_run_deeplabv3_resnet50 --batch_size 4 --predict;

多尺度推斷

使用[0.5,0.75,1.0,1.25,1.5,1.75,2.0,2.2]進(jìn)行多尺度推理。另外,使用H-Flip,同時(shí)必須使用單一批次。

# Multi-Scale Inference  python baseline.py --save_path baseline_run_deeplabv3_resnet50 --batch_size 1 --predict --mst;

使用驗(yàn)證集計(jì)算度量

計(jì)算指標(biāo)并將結(jié)果保存到results.txt中。

python evaluate.py --results baseline_run_deeplabv3_resnet50/results_val --batch_size 1 --predict --mst;

最終結(jié)果

如何用PyTorch進(jìn)行語義分割

最后的單一模型結(jié)果是0.6069831962012341,

到此,相信大家對(duì)“如何用PyTorch進(jìn)行語義分割”有了更深的了解,不妨來實(shí)際操作一番吧!這里是億速云網(wǎng)站,更多相關(guān)內(nèi)容可以進(jìn)入相關(guān)頻道進(jìn)行查詢,關(guān)注我們,繼續(xù)學(xué)習(xí)!

向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI