您好,登錄后才能下訂單哦!
這篇文章給大家分享的是有關(guān)python中決策樹(shù)算法指的是什么的內(nèi)容。小編覺(jué)得挺實(shí)用的,因此分享給大家做個(gè)參考,一起跟隨小編過(guò)來(lái)看看吧。
1、說(shuō)明
決策樹(shù)算法是在已知各種情況發(fā)生概率的基礎(chǔ)上,通過(guò)構(gòu)成決策樹(shù)來(lái)求取凈現(xiàn)值的期望值大于等于零的概率,評(píng)價(jià)項(xiàng)目風(fēng)險(xiǎn),判斷其可行性的決策分析方法。
分類算法是利用訓(xùn)練樣本集獲得分類函數(shù)即分類模型(分類器),從而實(shí)現(xiàn)將數(shù)據(jù)集中的樣本劃分到各個(gè)類中。分類模型通過(guò)學(xué)習(xí)訓(xùn)練樣本中屬性集與類別之間的潛在關(guān)系,并以此為依據(jù)對(duì)新樣本屬于哪一類進(jìn)行預(yù)測(cè)。
2、基本使用
決策樹(shù)算法是直觀運(yùn)用概率分析的一種圖解法,是一種十分常用的分類方法,屬于有監(jiān)督學(xué)習(xí)。
決策樹(shù)是一種樹(shù)形結(jié)構(gòu),其中每個(gè)內(nèi)部結(jié)點(diǎn)表示在一個(gè)屬性上的測(cè)試,每個(gè)分支代表一個(gè)測(cè)試輸出,每個(gè)葉子結(jié)點(diǎn)代表一種類別。
決策樹(shù)學(xué)習(xí)是以實(shí)例為基礎(chǔ)的歸納學(xué)習(xí),它采用自頂向下的遞歸方法,其基本思想是以信息熵為度量構(gòu)造一顆熵值下降最快的樹(shù),到葉子結(jié)點(diǎn)處的熵值為零,此時(shí)每個(gè)葉子節(jié)點(diǎn)中的實(shí)例都屬于同一類。
決策樹(shù)學(xué)習(xí)算法的最大優(yōu)點(diǎn)是,它可以自學(xué)習(xí),在學(xué)習(xí)的過(guò)程中不需要使用者了解過(guò)多的背景知識(shí),只需要對(duì)訓(xùn)練實(shí)例進(jìn)行較好的標(biāo)注,就能夠進(jìn)行學(xué)習(xí)。
Python主要應(yīng)用于:1、Web開(kāi)發(fā);2、數(shù)據(jù)科學(xué)研究;3、網(wǎng)絡(luò)爬蟲(chóng);4、嵌入式應(yīng)用開(kāi)發(fā);5、游戲開(kāi)發(fā);6、桌面應(yīng)用開(kāi)發(fā)。
感謝各位的閱讀!關(guān)于“python中決策樹(shù)算法指的是什么”這篇文章就分享到這里了,希望以上內(nèi)容可以對(duì)大家有一定的幫助,讓大家可以學(xué)到更多知識(shí),如果覺(jué)得文章不錯(cuò),可以把它分享出去讓更多的人看到吧!
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。