您好,登錄后才能下訂單哦!
本篇文章為大家展示了如何在Pytorch中操作統(tǒng)計(jì)模型參數(shù)量,內(nèi)容簡(jiǎn)明扼要并且容易理解,絕對(duì)能使你眼前一亮,通過這篇文章的詳細(xì)介紹希望你能有所收獲。
返回param中元素的數(shù)量
num_params = sum(param.numel() for param in net.parameters()) print(num_params)
補(bǔ)充:Pytorch 查看模型參數(shù)
查看利用Pytorch搭建模型的參數(shù),直接看程序
import torch # 引入torch.nn并指定別名 import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): # nn.Module子類的函數(shù)必須在構(gòu)造函數(shù)中執(zhí)行父類的構(gòu)造函數(shù) super(Net, self).__init__() # 卷積層 '1'表示輸入圖片為單通道, '6'表示輸出通道數(shù),'3'表示卷積核為3*3 self.conv1 = nn.Conv2d(1, 6, 3) #線性層,輸入1350個(gè)特征,輸出10個(gè)特征 self.fc1 = nn.Linear(1350, 10) #這里的1350是如何計(jì)算的呢?這就要看后面的forward函數(shù) #正向傳播 def forward(self, x): print(x.size()) # 結(jié)果:[1, 1, 32, 32] # 卷積 -> 激活 -> 池化 x = self.conv1(x) #根據(jù)卷積的尺寸計(jì)算公式,計(jì)算結(jié)果是30,具體計(jì)算公式后面第二張第四節(jié) 卷積神經(jīng)網(wǎng)絡(luò) 有詳細(xì)介紹。 x = F.relu(x) print(x.size()) # 結(jié)果:[1, 6, 30, 30] x = F.max_pool2d(x, (2, 2)) #我們使用池化層,計(jì)算結(jié)果是15 x = F.relu(x) print(x.size()) # 結(jié)果:[1, 6, 15, 15] # reshape,‘-1'表示自適應(yīng) #這里做的就是壓扁的操作 就是把后面的[1, 6, 15, 15]壓扁,變?yōu)?nbsp;[1, 1350] x = x.view(x.size()[0], -1) print(x.size()) # 這里就是fc1層的的輸入1350 x = self.fc1(x) return x net = Net()
for parameters in net.parameters(): print(parameters)
輸出為:
Parameter containing:
tensor([[[[-0.0104, -0.0555, 0.1417],
[-0.3281, -0.0367, 0.0208],
[-0.0894, -0.0511, -0.1253]]],
[[[-0.1724, 0.2141, -0.0895],
[ 0.0116, 0.1661, -0.1853],
[-0.1190, 0.1292, -0.2451]]],
[[[ 0.1827, 0.0117, 0.2880],
[ 0.2412, -0.1699, 0.0620],
[ 0.2853, -0.2794, -0.3050]]],
[[[ 0.1930, 0.2687, -0.0728],
[-0.2812, 0.0301, -0.1130],
[-0.2251, -0.3170, 0.0148]]],
[[[-0.2770, 0.2928, -0.0875],
[ 0.0489, -0.2463, -0.1605],
[ 0.1659, -0.1523, 0.1819]]],
[[[ 0.1068, 0.2441, 0.3160],
[ 0.2945, 0.0897, 0.2978],
[ 0.0419, -0.0739, -0.2609]]]])
Parameter containing:
tensor([ 0.0782, 0.2679, -0.2516, -0.2716, -0.0084, 0.1401])
Parameter containing:
tensor([[ 1.8612e-02, 6.5482e-03, 1.6488e-02, ..., -1.3283e-02,
1.8715e-02, 5.4037e-03],
[ 1.8569e-03, 1.8022e-02, -2.3465e-02, ..., 1.6527e-03,
2.0443e-02, -2.2009e-02],
[ 9.9104e-03, 6.6134e-03, -2.7171e-02, ..., -5.7119e-03,
2.4532e-02, 2.2284e-02],
...,
[ 6.9182e-03, 1.7279e-02, -1.7783e-03, ..., 1.9354e-02,
2.1105e-03, 8.6245e-03],
[ 1.6877e-02, -1.2414e-02, 2.2409e-02, ..., -2.0604e-02,
1.3253e-02, -3.6008e-03],
[-2.1598e-02, 2.5892e-02, 1.9372e-02, ..., 1.4159e-02,
7.0983e-03, -2.3713e-02]])
Parameter containing:
tensor(1.00000e-02 *
[ 1.4703, 1.0289, 2.5069, -2.2603, -1.5218, -1.7019, 1.2569,
0.4617, -2.3082, -0.6282])
for name,parameters in net.named_parameters(): print(name,':',parameters.size())
輸出:
conv1.weight : torch.Size([6, 1, 3, 3])
conv1.bias : torch.Size([6])
fc1.weight : torch.Size([10, 1350])
fc1.bias : torch.Size([10])
1.PyTorch是相當(dāng)簡(jiǎn)潔且高效快速的框架;2.設(shè)計(jì)追求最少的封裝;3.設(shè)計(jì)符合人類思維,它讓用戶盡可能地專注于實(shí)現(xiàn)自己的想法;4.與google的Tensorflow類似,F(xiàn)AIR的支持足以確保PyTorch獲得持續(xù)的開發(fā)更新;5.PyTorch作者親自維護(hù)的論壇 供用戶交流和求教問題6.入門簡(jiǎn)單
上述內(nèi)容就是如何在Pytorch中操作統(tǒng)計(jì)模型參數(shù)量,你們學(xué)到知識(shí)或技能了嗎?如果還想學(xué)到更多技能或者豐富自己的知識(shí)儲(chǔ)備,歡迎關(guān)注億速云行業(yè)資訊頻道。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。