溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

怎么在Python中使用OpenCV

發(fā)布時間:2021-04-17 15:37:49 來源:億速云 閱讀:374 作者:Leah 欄目:開發(fā)技術

這篇文章給大家介紹怎么在Python中使用OpenCV,內容非常詳細,感興趣的小伙伴們可以參考借鑒,希望對大家能有所幫助。

OpenCV

OpenCV是計算機視覺中最受歡迎的庫,最初由intel使用C和C ++進行開發(fā)的,現(xiàn)在也可以在python中使用。該庫是一個跨平臺的開源庫,是免費使用的。OpenCV庫是一個高度優(yōu)化的庫,主要關注實時應用程序。
OpenCV庫是2500多種優(yōu)化算法的組合,可用于檢測和識別不同的人臉,實時識別圖像中的對象,使用視頻和網(wǎng)絡攝像頭對不同的人類動作進行分類,跟蹤攝像機的運動,跟蹤運動對象(例如汽車,人等),實時計數(shù)對象,縫合圖像來產生高分辨率圖像,從圖像數(shù)據(jù)庫中查找相似的圖像,從使用閃光燈拍攝的圖像中消除紅眼并提高圖像質量,跟蹤眼睛的運動,跟蹤臉部等。
它擁有大約4.7萬活躍用戶社區(qū),下載量超過1800萬。谷歌,亞馬遜,特斯拉,微軟,本田等許多大公司都使用Open cv來改善他們的產品,它更是驅動了AI的發(fā)展。

先決條件

在開始編寫代碼之前,我們需要在設備上安裝opencv。
如果你是ProIn編程專家,并且熟悉每個IDE,那么請使用Pycharm并從設置中的程序包管理器安裝OpenCV-python。
如果你是初學者或中級程序員,或者只是想關注博客,那么我們將使用代碼編輯器而不是IDE。
只需轉到Visual Studio Code網(wǎng)站并根據(jù)你的操作系統(tǒng)下載最新版本即可。

  • https://code.visualstudio.com/download

現(xiàn)在,我們將創(chuàng)建一個虛擬環(huán)境,并在其中安裝opencv。打開終端,然后使用cd定位到桌面,使用mkdir 創(chuàng)建一個名為opencv

的文件夾,然后運行以下命令。

python -m venv env

現(xiàn)在,使用env\scripts\activate激活環(huán)境,你會在C:\Users\username\Desktop\opencv之前看到小括號(env)出現(xiàn)。
現(xiàn)在,只需使用pip安裝OpenCV。

我們會在本文中涵蓋7個主題

1. 讀,寫和顯示圖像
2. 讀取視頻并與網(wǎng)絡攝像頭集成
3. 調整大小和裁剪圖像
4. 基本的圖像過濾器使用的函數(shù)
5. 繪制不同的形狀
6. 在圖像上書寫文字
7. 檢測并裁剪臉部

讀,寫和顯示圖像

要使用Opencv讀取圖像,我們有imread()函數(shù); 要顯示圖像,有imshow()函數(shù),而對于書寫,我們有imwrite()函數(shù)。讓我們看看它們的語法。

imread():

img = cv2.imread("PATH_TO_IMAGE.jpg/png")
Example
img = imread("images/dog0.jpg")

imshow():

cv2.imshow("WINDOW NAME",IMG_VAR)
Example
imshow("Dog Image",img)

imwrite():

cv2.imwrite(FILENAME, IMAGE)
filename: A string representing the file name. The filename must include image format like .jpg, .png, etc.
image: It is the image that is to be saved.
Example
cv2.imwrite('images/img',img)

讀取視頻并與網(wǎng)絡攝像頭集成

讀取視頻文件與在OpenCV中讀取圖像文件非常相似,區(qū)別在于我們使用了cv2.videocapture。

句法

video = cv2.VideoCapture("FILEPATH.mp4")
Example
video = cv2.VideoCapture("video/dog/dog.mp4")

視頻是許多幀結合在一起的集合,每幀都是一幅圖像。要使用OpenCV觀看視頻,我們只需要使用while循環(huán)顯示視頻的每一幀。

while True:
   success , img = cap.read()
   cv2.imshow("Video",img)
   if cv2.waitKey(1) & 0xff==ord('q'):##key 'q' will break the loop
       break

要與網(wǎng)絡攝像頭集成,我們需要傳遞網(wǎng)絡攝像頭的端口值而不是視頻路徑。如果你使用的是筆記本電腦,但沒有連接任何外部網(wǎng)絡攝像頭,則只需傳遞參數(shù)0;如果你有外部網(wǎng)絡攝像頭,則傳遞參數(shù)1。

cap = cv2.VideoCapture(0)
cap.set(3,640)  ## Frame width
cap.set(4,480)  ## Frame Height
cap.set(10,100) ## Brightness
while True:
   success, img = cap.read()
   cv2.imshow("Video",img)
   if cv2.waitKey(1) & 0xff == ord('q'):
        break

調整大小和裁剪圖像

調整大小是更改圖像形狀的過程。在Opencv中,我們可以使用resize函數(shù)調整圖像形狀的大小。

句法

cv2.resize(IMG,(WIDTH,HEIGHT))
IMG: image which we want to resize
WIDTH: new width of the resize image
HEIGHT: new height of the resize image
Example
cv2.resize(img,(224,224))

要首先調整圖像的大小,我們需要知道圖像的形狀。我們可以使用shape來找到任何圖像的形狀,然后根據(jù)圖像形狀,可以增加或減小圖像的大小。讓我們看看示例。

import cv2
img = cv2.imread("images/img0.jpg") ##Choose any image
print(img.shape)
imgResize = cv2.resize(img,(224,224)) ##Decrease size
imgResize2 = cv2.resize(img,(1024,1024)) ##Increase size
cv2.imshow("Image",img)
cv2.imshow("Image Resize",imgResize)
cv2.imshow("Image Increase size",imgResize2)
print(imgResize.shape)
cv2.waitKey(0)

如果你不想對寬度和高度進行硬編碼,也可以使用形狀,然后使用索引來增加寬度和高度。

import cv2
img = cv2.imread("images/img0.jpg") ##Choose any image
print(img.shape)
shape = img.shape
imgResize = cv2.resize(img,(shape[0]//2,shape[1]//2))##Decrease size
imgResize2 = cv2.resize(img,(shape[0]*2,shape[1]*2)) ##Increase size
cv2.imshow("Image",img)
cv2.imshow("Image Resize",imgResize)
cv2.imshow("Image Increase size",imgResize2)
print(imgResize.shape)
cv2.waitKey(0)

怎么在Python中使用OpenCV

裁剪圖像

裁剪是獲取圖像的一部分過程。在OpenCV中,我們可以通過定義裁剪后的矩形坐標來執(zhí)行裁剪。

句法

imgCropped = img[y1:y2, x1:x2]
(x1,y1): top-left vertex
(x2,y2): bottom-right vertex
Example
imgCropped = img[0:100,200:200]

使用裁剪方法,讓我們嘗試從圖像中獲取蒙娜麗莎的臉。

import cv2
img = cv2.imread("images/img0.jpg")
imgCropped = img[50:250,120:330]
cv2.imshow("Image cropped",imgCropped)
cv2.imshow("Image",img)
cv2.waitKey(0)

怎么在Python中使用OpenCV

你也可以使用paint來找到(x1,y1),(x2,y2)的正確坐標。
右鍵單擊圖像并保存,嘗試從圖像中獲取王卡。

怎么在Python中使用OpenCV

提示:使用paint來找到正確的坐標,最后使用調整大小來增加裁剪圖像的大小。
“在尋求解決方案之前,請嘗試自己動手做。”
?解決方案- https://gist.github.com/Abhayparashar31/9b01473431de765c0a73e81271233d91

基本的圖像過濾器使用的函數(shù)

我們可以在圖像上使用許多基本的濾鏡操作,例如將圖像轉換為灰度圖像,模糊圖像等等。讓我們一一看一下比較重要的操作。

將圖像轉為灰度圖像

要將圖像轉換為灰度,我們可以使用一個函數(shù)cvtColor,這里我們將cv2.COLOR_BGR2GRAY作為參數(shù)傳遞。

imgGray = cv2.cvtColor(IMG,cv2.CODE)
IMG: Original image
CODE: Conversion code for Gray(COLOR_BGR2GRAY)
Example
imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

將圖像轉為HSV

要將圖像轉換為HSV,我們可以使用函數(shù)cvtColor,這里我們將cv2.COLOR_BGR2HSV作為參數(shù)傳遞。它主要用于對象跟蹤。

imgGray = cv2.cvtColor(IMG,cv2.CODE)
IMG: Original image
CODE: Conversion code for Gray(COLOR_BGR2HSV)
Example
imgHsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)

圖像模糊

模糊用于去除圖像中的多余噪聲,也稱為平滑,這是對圖像應用低通濾波器的過程。要在Opencv中使用模糊,我們有一個函數(shù)GaussianBlur。

imgBlur = cv2.GaussianBlur(img,(sigmaX,sigmaY),kernalSize)
kernalsize ? A Size object representing the size of the kernel.
sigmaX ? A variable representing the Gaussian kernel standard deviation in X direction.
sigmaY - same as sigmaX
Exmaple
imgBlur = cv2.GaussianBlur(img,(3,3),0)

邊緣檢測

在OpenCV中,我們使用Canny邊緣檢測器來檢測圖像中的邊緣,也有不同的邊緣檢測器,但最著名的是Canny邊緣檢測器。Canny邊緣檢測器是一種邊緣檢測算子,它使用多階段算法來檢測圖像中的大范圍邊緣,它由John F. Canny在1986年開發(fā)。

imgCanny = cv2.Canny(img,threshold1,threshold2)
threshold1,threshold2:Different values of threshold different for every images
Example
imgCanny = cv2.Canny(img,100,150)

膨脹

膨脹是用來增加圖像中邊緣的大小。首先,我們定義一個大小為奇數(shù)(5,5)的核矩陣,然后利用核函數(shù)對圖像進行放大。我們對Canny邊緣檢測器的輸出圖像進行了放大處理。

kernel = np.ones((5,5),np.uint8) ## DEFINING KERNEL OF 5x5
imgDialation = cv2.dilate(imgCanny,kernel,iterations=1) ##DIALATION

腐蝕

腐蝕是擴張的反面,它用于減小圖像邊緣的尺寸。首先,我們定義一個奇數(shù)(5,5)的核矩陣大小,然后使用核對圖像執(zhí)行腐蝕。我們對Canny邊緣檢測器的輸出圖像施加腐蝕。

kernel = np.ones((5,5),np.uint8) ## DEFINING KERNEL OF 5x5
imgDialation = cv2.erode(imgCanny,kernel,iterations=1) ##EROSION

現(xiàn)在,在同一程序中將所有基礎函數(shù)應用于Monalisa映像。

怎么在Python中使用OpenCV

繪制不同的形狀

我們可以使用OpenCV來繪制矩形,圓形,直線等不同的形狀。

矩形:

要在圖像上繪制矩形,我們使用矩形函數(shù)。在函數(shù)中,我們傳遞寬度,高度,X,Y,RGB中的顏色,厚度作為參數(shù)。

cv2.rectangle(img,(w,h),(x,y),(R,G,B),THICKNESS)
w: width
h: height
x: distance from x axis
y: distance from y axis
R,G,B: color in RGB form (255,255,0)
THICKNESS: thickness of rectangel(integer)
Example
cv2.rectangle(img,(100,300),(200,300),(255,0,255),2)

圓:

要繪制一個圓,我們使用cv2.circle。我們傳遞x,y,半徑大小,RGB形式的顏色,厚度作為參數(shù)。

cv2.circle(img,(x,y),radius,(R,G,B),THICKNESS)
x: distance from x axis
y: distance from y axis
radius: size of radius(integer)
R,G,B: color in RGB form (255,255,0)
THICKNESS: thickness of rectangel(integer)
Example
cv2.circle(img,(200,130),90,(255,255,0),2)

線:

要繪制一條線,我們使用cv2.line,使用起點(x1,y1),終點(x2,y2),RGB形式的顏色,厚度作為參數(shù)。

cv2.line(img,(x1,y1),(x2,y2),(R,G,B),THICKNESS)
x1,y1: start point of line (integer)
x2,y2: end point of line (integer)
R,G,B: color in RGB form (255,255,0)
THICKNESS: thickness of rectangel(integer)
Example
cv2.line(img,(110,260),(300,260),(0,255,0),3)

在圖像上書寫文字

在OpenCV中,我們有一個函數(shù)cv2.puttext, 可以在特定位置的圖像上寫文本。它以圖像,文本,x,y,顏色,字體,字體比例,粗細為輸入。

cv2.putText(img,text,(x,y),FONT,FONT_SCALE,(R,G,B),THICKNESS)
img: image to put text on
text: text to put on image
X: text distance from X axis
Y: text distance from Y axis
FONT: Type of FONT (ALL FONT TYPES)
FONT_SCALE: Scale of Font(Integer)
R,G,B: color in RGB form (255,255,0)
THICKNESS: thickness of rectangel(integer)
Example
cv2.putText(img,"HELLO",(120,250),cv2.FONT_HERSHEY_COMPLEX,1,(255,255,255),2)

怎么在Python中使用OpenCV

下載Monalisa圖片。
任務:使用形狀和文本為左側圖像中所示的Monalisa臉創(chuàng)建框架。
提示:首先是一個圓形,然后是矩形,然后根據(jù)圓形和矩形放置文本,最后根據(jù)文本放置一行。
?解決方案-  https://gist.github.com/Abhayparashar31/af36bf25ce61345266db4b54aba33be1

檢測并裁剪臉部

在創(chuàng)建人臉識別系統(tǒng)時,人臉檢測是非常有用的。在OpenCV中,我們提供了許多可用于不同目的的預訓練haar級聯(lián)分類器。在OpenCV GitHub上查看分類器的完整列表。

  • https://github.com/opencv/opencv/tree/master/data/haarcascades

為了檢測OpenCV中的人臉,我們使用了haarcascade_frontalface_default.xml分類器,它會返回我們圖像的四個坐標(w,h,x,y),使用這些坐標,我們將在臉部上繪制一個矩形,然后使用相同的坐標來裁剪臉部?,F(xiàn)在使用imwrite,我們將裁剪的圖像保存在目錄中。

import cv2
# Load the cascade
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# Read the input image
img = cv2.imread('images/img0.jpg')
# Convert into grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Detect faces
faces = face_cascade.detectMultiScale(gray, 1.3, 4)
# Draw rectangle around the faces
for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)
    # Cropping Face
    crop_face = img[y:y + h, x:x + w]
    #Saving Cropped Face
    cv2.imwrite(str(w) + str(h) + '_faces.jpg', crop_face)
cv2.imshow('img', img)
cv2.imshow("imgcropped",crop_face)
cv2.waitKey()

關于怎么在Python中使用OpenCV就分享到這里了,希望以上內容可以對大家有一定的幫助,可以學到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。

向AI問一下細節(jié)

免責聲明:本站發(fā)布的內容(圖片、視頻和文字)以原創(chuàng)、轉載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關證據(jù),一經查實,將立刻刪除涉嫌侵權內容。

AI