您好,登錄后才能下訂單哦!
今天就跟大家聊聊有關(guān)merge()函數(shù)如何在Pandas中使用,可能很多人都不太了解,為了讓大家更加了解,小編給大家總結(jié)了以下內(nèi)容,希望大家根據(jù)這篇文章可以有所收獲。
pandas中的merge()函數(shù)類似于SQL中join的用法,可以將不同數(shù)據(jù)集依照某些字段(屬性)進(jìn)行合并操作,得到一個(gè)新的數(shù)據(jù)集。
用法:
DataFrame1.merge(DataFrame2, how=‘inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', ‘_y'))
參數(shù)說明
參數(shù) | 說明 |
---|---|
how | 默認(rèn)為inner,可設(shè)為inner/outer/left/right |
on | 根據(jù)某個(gè)字段進(jìn)行連接,必須存在于兩個(gè)DateFrame中(若未同時(shí)存在,則需要分別使用left_on和right_on來設(shè)置) |
left_on | 左連接,以DataFrame1中用作連接鍵的列 |
right_on | 右連接,以DataFrame2中用作連接鍵的列 |
left_index | 將DataFrame1行索引用作連接鍵 |
right_index | 將DataFrame2行索引用作連接鍵 |
sort | 根據(jù)連接鍵對(duì)合并后的數(shù)據(jù)進(jìn)行排列,默認(rèn)為True |
suffixes | 對(duì)兩個(gè)數(shù)據(jù)集中出現(xiàn)的重復(fù)列,新數(shù)據(jù)集中加上后綴_x,_y進(jìn)行區(qū)別 |
#利用字典dict創(chuàng)建數(shù)據(jù)框 dataDf1=pd.DataFrame({'lkey':['foo','bar','baz','foo'], 'value':[1,2,3,4]}) dataDf2=pd.DataFrame({'rkey':['foo','bar','qux','bar'], 'value':[5,6,7,8]}) print(dataDf1) print(dataDf2) >>> lkey value 0 foo 1 1 bar 2 2 baz 3 3 foo 4 rkey value 0 foo 5 1 bar 6 2 qux 7 3 bar 8
#inner鏈接 dataLfDf=dataDf1.merge(dataDf2, left_on='lkey',right_on='rkey') >>> lkey value_x rkey value_y 0 foo 1 foo 5 1 foo 4 foo 5 2 bar 2 bar 6 3 bar 2 bar 8
#Right鏈接 dataDf1.merge(dataDf2, left_on='lkey', right_on='rkey',how='right') >>> lkey value_x rkey value_y 0 foo 1.0 foo 5 1 foo 4.0 foo 5 2 bar 2.0 bar 6 3 bar 2.0 bar 8 4 NaN NaN qux 7
#Outer鏈接 dataDf1.merge(dataDf2, left_on='lkey', right_on='rkey', how='outer') >>> lkey value_x rkey value_y 0 foo 1.0 foo 5.0 1 foo 4.0 foo 5.0 2 bar 2.0 bar 6.0 3 bar 2.0 bar 8.0 4 baz 3.0 NaN NaN 5 NaN NaN qux 7.0
看完上述內(nèi)容,你們對(duì)merge()函數(shù)如何在Pandas中使用有進(jìn)一步的了解嗎?如果還想了解更多知識(shí)或者相關(guān)內(nèi)容,請(qǐng)關(guān)注億速云行業(yè)資訊頻道,感謝大家的支持。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。