溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點(diǎn)擊 登錄注冊 即表示同意《億速云用戶服務(wù)條款》

如果在java中 selenium 和OpenCV破解易盾滑動驗(yàn)證碼

發(fā)布時間:2021-02-04 18:16:19 來源:億速云 閱讀:521 作者:Leah 欄目:開發(fā)技術(shù)

如果在java中 selenium 和OpenCV破解易盾滑動驗(yàn)證碼?針對這個問題,這篇文章詳細(xì)介紹了相對應(yīng)的分析和解答,希望可以幫助更多想解決這個問題的小伙伴找到更簡單易行的方法。

網(wǎng)易易盾:dun.163.com

* 驗(yàn)證碼地址:https://dun.163.com/trial/jigsaw
* 使用OpenCv模板匹配
* Java + Selenium + OpenCV
/**
	 * 模擬人工移動
	 * @param driver
	 * @param element頁面滑塊
	 * @param distance需要移動距離
	 */
	public static void move(WebDriver driver, WebElement element, int distance) throws InterruptedException {
		int randomTime = 0;
		if (distance > 90) {
			randomTime = 250;
		} else if (distance > 80 && distance <= 90) {
			randomTime = 150;
		}
		List<Integer> track = getMoveTrack(distance - 2);
		int moveY = 1;
		try {
			Actions actions = new Actions(driver);
			actions.clickAndHold(element).perform();
			Thread.sleep(200);
			for (int i = 0; i < track.size(); i++) {
				actions.moveByOffset(track.get(i), moveY).perform();
				Thread.sleep(new Random().nextInt(300) + randomTime);
			}
			Thread.sleep(200);
			actions.release(element).perform();
		} catch (Exception e) {
			e.printStackTrace();
		}
	}
	/**
	 * 根據(jù)距離獲取滑動軌跡
	 * @param distance需要移動的距離
	 * @return
	 */
	public static List<Integer> getMoveTrack(int distance) {
		List<Integer> track = new ArrayList<>();// 移動軌跡
		Random random = new Random();
		int current = 0;// 已經(jīng)移動的距離
		int mid = (int) distance * 4 / 5;// 減速閾值
		int a = 0;
		int move = 0;// 每次循環(huán)移動的距離
		while (true) {
			a = random.nextInt(10);
			if (current <= mid) {
				move += a;// 不斷加速
			} else {
				move -= a;
			}
			if ((current + move) < distance) {
				track.add(move);
			} else {
				track.add(distance - current);
				break;
			}
			current += move;
		}
		return track;
	}

操作過程/**

	 * 獲取網(wǎng)易驗(yàn)證滑動距離
	 * 
	 * @return
	 */
	public static String dllPath = "C://chrome//opencv_java440.dll";

	public double getDistance(String bUrl, String sUrl) {
		System.load(dllPath);
		File bFile = new File("C:/EasyDun_b.png");
		File sFile = new File("C:/EasyDun_s.png");
		try {
			FileUtils.copyURLToFile(new URL(bUrl), bFile);
			FileUtils.copyURLToFile(new URL(sUrl), sFile);
			BufferedImage bgBI = ImageIO.read(bFile);
			BufferedImage sBI = ImageIO.read(sFile);
			// 裁剪
			cropImage(bgBI, sBI, bFile, sFile);
			Mat s_mat = Imgcodecs.imread(sFile.getPath());
			Mat b_mat = Imgcodecs.imread(bFile.getPath());
			
			//陰影部分為黑底時需要轉(zhuǎn)灰度和二值化,為白底時不需要
			// 轉(zhuǎn)灰度圖像
			Mat s_newMat = new Mat();
			Imgproc.cvtColor(s_mat, s_newMat, Imgproc.COLOR_BGR2GRAY);
			// 二值化圖像
			binaryzation(s_newMat);
			Imgcodecs.imwrite(sFile.getPath(), s_newMat);

			int result_rows = b_mat.rows() - s_mat.rows() + 1;
			int result_cols = b_mat.cols() - s_mat.cols() + 1;
			Mat g_result = new Mat(result_rows, result_cols, CvType.CV_32FC1);
			Imgproc.matchTemplate(b_mat, s_mat, g_result, Imgproc.TM_SQDIFF); // 歸一化平方差匹配法TM_SQDIFF 相關(guān)系數(shù)匹配法TM_CCOEFF
																				
			Core.normalize(g_result, g_result, 0, 1, Core.NORM_MINMAX, -1, new Mat());
			Point matchLocation = new Point();
			MinMaxLocResult mmlr = Core.minMaxLoc(g_result);
			matchLocation = mmlr.maxLoc; // 此處使用maxLoc還是minLoc取決于使用的匹配算法
			Imgproc.rectangle(b_mat, matchLocation, new Point(matchLocation.x + s_mat.cols(), matchLocation.y + s_mat.rows()), new Scalar(0, 255, 0, 0));
			Imgcodecs.imwrite(bFile.getPath(), b_mat);
			return matchLocation.x + s_mat.cols() - sBI.getWidth() + 12;
		} catch (Throwable e) {
			e.printStackTrace();
			return 0;
		} finally {
			 bFile.delete();
			 sFile.delete();
		}
	}

	/**
	 * 圖片亮度調(diào)整
	 * 
	 * @param image
	 * @param param
	 * @throws IOException
	 */
	public void bloding(BufferedImage image, int param) throws IOException {
		if (image == null) {
			return;
		} else {
			int rgb, R, G, B;
			for (int i = 0; i < image.getWidth(); i++) {
				for (int j = 0; j < image.getHeight(); j++) {
					rgb = image.getRGB(i, j);
					R = ((rgb >> 16) & 0xff) - param;
					G = ((rgb >> 8) & 0xff) - param;
					B = (rgb & 0xff) - param;
					rgb = ((clamp(255) & 0xff) << 24) | ((clamp(R) & 0xff) << 16) | ((clamp(G) & 0xff) << 8) | ((clamp(B) & 0xff));
					image.setRGB(i, j, rgb);

				}
			}
		}
	}

	// 判斷a,r,g,b值,大于256返回256,小于0則返回0,0到256之間則直接返回原始值
	private int clamp(int rgb) {
		if (rgb > 255)
			return 255;
		if (rgb < 0)
			return 0;
		return rgb;
	}

	/**
	 * 生成半透明小圖并裁剪
	 * 
	 * @param image
	 * @return
	 */
	private void cropImage(BufferedImage bigImage, BufferedImage smallImage, File bigFile, File smallFile) {
		int y = 0;
		int h_ = 0;
		try {
			// 2 生成半透明圖片
			bloding(bigImage, 75);
			for (int w = 0; w < smallImage.getWidth(); w++) {
				for (int h = smallImage.getHeight() - 2; h >= 0; h--) {
					int rgb = smallImage.getRGB(w, h);
					int A = (rgb & 0xFF000000) >>> 24;
					if (A >= 100) {
						rgb = (127 << 24) | (rgb & 0x00ffffff);
						smallImage.setRGB(w, h, rgb);
					}
				}
			}
			for (int h = 1; h < smallImage.getHeight(); h++) {
				for (int w = 1; w < smallImage.getWidth(); w++) {
					int rgb = smallImage.getRGB(w, h);
					int A = (rgb & 0xFF000000) >>> 24;
					if (A > 0) {
						if (y == 0)
							y = h;
						h_ = h - y;
						break;
					}
				}
			}
			smallImage = smallImage.getSubimage(0, y, smallImage.getWidth(), h_);
			bigImage = bigImage.getSubimage(0, y, bigImage.getWidth(), h_);
			ImageIO.write(bigImage, "png", bigFile);
			ImageIO.write(smallImage, "png", smallFile);
		} catch (Throwable e) {
			System.out.println(e.toString());
		}
	}

	/**
	 * 
	 * @param mat
	 *   二值化圖像
	 */
	public static void binaryzation(Mat mat) {
		int BLACK = 0;
		int WHITE = 255;
		int ucThre = 0, ucThre_new = 127;
		int nBack_count, nData_count;
		int nBack_sum, nData_sum;
		int nValue;
		int i, j;
		int width = mat.width(), height = mat.height();
		// 尋找最佳的闕值
		while (ucThre != ucThre_new) {
			nBack_sum = nData_sum = 0;
			nBack_count = nData_count = 0;

			for (j = 0; j < height; ++j) {
				for (i = 0; i < width; i++) {
					nValue = (int) mat.get(j, i)[0];

					if (nValue > ucThre_new) {
						nBack_sum += nValue;
						nBack_count++;
					} else {
						nData_sum += nValue;
						nData_count++;
					}
				}
			}
			nBack_sum = nBack_sum / nBack_count;
			nData_sum = nData_sum / nData_count;
			ucThre = ucThre_new;
			ucThre_new = (nBack_sum + nData_sum) / 2;
		}
		// 二值化處理
		int nBlack = 0;
		int nWhite = 0;
		for (j = 0; j < height; ++j) {
			for (i = 0; i < width; ++i) {
				nValue = (int) mat.get(j, i)[0];
				if (nValue > ucThre_new) {
					mat.put(j, i, WHITE);
					nWhite++;
				} else {
					mat.put(j, i, BLACK);
					nBlack++;
				}
			}
		}
		// 確保白底黑字
		if (nBlack > nWhite) {
			for (j = 0; j < height; ++j) {
				for (i = 0; i < width; ++i) {
					nValue = (int) (mat.get(j, i)[0]);
					if (nValue == 0) {
						mat.put(j, i, WHITE);
					} else {
						mat.put(j, i, BLACK);
					}
				}
			}
		}
	}
	// 延時加載
	private static WebElement waitWebElement(WebDriver driver, By by, int count) throws Exception {
		WebElement webElement = null;
		boolean isWait = false;
		for (int k = 0; k < count; k++) {
			try {
				webElement = driver.findElement(by);
				if (isWait)
					System.out.println(" ok!");
				return webElement;
			} catch (org.openqa.selenium.NoSuchElementException ex) {
				isWait = true;
				if (k == 0)
					System.out.print("waitWebElement(" + by.toString() + ")");
				else
					System.out.print(".");
				Thread.sleep(50);
			}
		}
		if (isWait)
			System.out.println(" outTime!");
		return null;
	}

關(guān)于如果在java中 selenium 和OpenCV破解易盾滑動驗(yàn)證碼問題的解答就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,如果你還有很多疑惑沒有解開,可以關(guān)注億速云行業(yè)資訊頻道了解更多相關(guān)知識。

向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI