溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務(wù)條款》

opencv中怎么實現(xiàn)車道線檢測功能

發(fā)布時間:2021-08-10 14:24:07 來源:億速云 閱讀:125 作者:Leah 欄目:編程語言

本篇文章給大家分享的是有關(guān)opencv中怎么實現(xiàn)車道線檢測功能,小編覺得挺實用的,因此分享給大家學(xué)習(xí),希望大家閱讀完這篇文章后可以有所收獲,話不多說,跟著小編一起來看看吧。

方法一

main.cpp

#include<cv.h>#include<cxcore.h>#include<highgui.h>#include"mylinedetect.h"#include<cstdio>#include<iostream>using namespace std;int main(){  //聲明IplImage指針  IplImage* pFrame = NULL;  IplImage* pCutFrame = NULL;  IplImage* pCutFrImg = NULL;  //聲明CvCapture指針  CvCapture* pCapture = NULL;  //聲明CvMemStorage和CvSeg指針  CvMemStorage* storage = cvCreateMemStorage();  CvSeq* lines = NULL;  //生成視頻的結(jié)構(gòu)  VideoWriter writer("result.avi", CV_FOURCC('M', 'J', 'P', 'G'), 25.0, Size(856, 480));  //當(dāng)前幀數(shù)  int nFrmNum = 0;  //裁剪的天空高度  int CutHeight = 310;  //窗口命名  cvNamedWindow("video", 1);  cvNamedWindow("BWmode", 1);  //調(diào)整窗口初始位置  cvMoveWindow("video", 300, 0);  cvMoveWindow("BWmode", 300, 520);  //不能打開則退出  if (!(pCapture = cvCaptureFromFile("lane.avi"))){    fprintf(stderr, "Can not open video file\n");    return -2;  }  //每次讀取一楨的視頻  while (pFrame = cvQueryFrame(pCapture)){    //設(shè)置ROI裁剪圖像    cvSetImageROI(pFrame, cvRect(0, CutHeight, pFrame->width, pFrame->height - CutHeight));    nFrmNum++;    //第一次要申請內(nèi)存p    if (nFrmNum == 1){      pCutFrame = cvCreateImage(cvSize(pFrame->width, pFrame->height - CutHeight), pFrame->depth, pFrame->nChannels);      cvCopy(pFrame, pCutFrame, 0);      pCutFrImg = cvCreateImage(cvSize(pCutFrame->width, pCutFrame->height), IPL_DEPTH_8U, 1);      //轉(zhuǎn)化成單通道圖像再處理      cvCvtColor(pCutFrame, pCutFrImg, CV_BGR2GRAY);    }    else{      //獲得剪切圖      cvCopy(pFrame, pCutFrame, 0);#if 0    //反透視變換      //二維坐標(biāo)下的點,類型為浮點      CvPoint2D32f srcTri[4], dstTri[4];      CvMat* warp_mat = cvCreateMat(3, 3, CV_32FC1);      //計算矩陣反射變換      srcTri[0].x = 10;      srcTri[0].y = 20;      srcTri[1].x = pCutFrame->width - 5;      srcTri[1].y = 0;      srcTri[2].x = 0;      srcTri[2].y = pCutFrame->height - 1;      srcTri[3].x = pCutFrame->width - 1;      srcTri[3].y = pCutFrame->height - 1;      //改變目標(biāo)圖像大小      dstTri[0].x = 0;      dstTri[0].y = 0;      dstTri[1].x = pCutFrImg->width - 1;      dstTri[1].y = 0;      dstTri[2].x = 0;      dstTri[2].y = pCutFrImg->height - 1;      dstTri[3].x = pCutFrImg->width - 1;      dstTri[3].y = pCutFrImg->height - 1;      //獲得矩陣      cvGetPerspectiveTransform(srcTri, dstTri, warp_mat);      //反透視變換      cvWarpPerspective(pCutFrame, pCutFrImg, warp_mat);#endif      //前景圖轉(zhuǎn)換為灰度圖      cvCvtColor(pCutFrame, pCutFrImg, CV_BGR2GRAY);      //二值化前景圖      cvThreshold(pCutFrImg, pCutFrImg, 80, 255.0, CV_THRESH_BINARY);      //進行形態(tài)學(xué)濾波,去掉噪音      cvErode(pCutFrImg, pCutFrImg, 0, 2);      cvDilate(pCutFrImg, pCutFrImg, 0, 2);      //canny變化      cvCanny(pCutFrImg, pCutFrImg, 50, 120);      //sobel變化      //Mat pCutFrMat(pCutFrImg);      //Sobel(pCutFrMat, pCutFrMat, pCutFrMat.depth(), 1, 1);      //laplacian變化      //Laplacian(pCutFrMat, pCutFrMat, pCutFrMat.depth());#if 1    //0為下面的代碼,1為上面的代碼  #pragma region Hough直線檢測      lines = cvHoughLines2(pCutFrImg, storage, CV_HOUGH_PROBABILISTIC, 1, CV_PI / 180, 100, 15, 15);      printf("Lines number: %d\n", lines->total);      //畫出直線      for (int i = 0; i<lines->total; i++){        CvPoint* line = (CvPoint*)cvGetSeqElem(lines, i);        double k = ((line[0].y - line[1].y)*1.0 / (line[0].x - line[1].x));        cout<<"nFrmNum "<<nFrmNum<<" 's k = "<<k<<endl;        if(!(abs(k)<0.1))//去掉水平直線          cvLine(pFrame, line[0], line[1], CV_RGB(255, 0, 0), 6, CV_AA);      }  #pragma endregion#else  #pragma region mylinedetect      Mat edge(pCutFrImg);      vector<struct line> lines = detectLine(edge, 60);      Mat pFrameMat(pFrame);      drawLines(pFrameMat, lines);      namedWindow("mylinedetect", 1);      imshow("mylinedetect", pFrameMat);  #pragma endregion#endif      //恢復(fù)ROI區(qū)域      cvResetImageROI(pFrame);      //寫入視頻流      writer << pFrame;      //顯示圖像      cvShowImage("video", pFrame);      cvShowImage("BWmode", pCutFrImg);      //按鍵事件,空格暫停,其他跳出循環(huán)      int temp = cvWaitKey(2);      if (temp == 32){        while (cvWaitKey() == -1);      }      else if (temp >= 0){        break;      }    }  }  //銷毀窗口  cvDestroyWindow("video");  cvDestroyWindow("BWmode");  //釋放圖像  cvReleaseImage(&pCutFrImg);  cvReleaseImage(&pCutFrame);  cvReleaseCapture(&pCapture);  return 0;}

mylinedetect.h

#include "opencv2/imgproc/imgproc.hpp"#include "opencv2/highgui/highgui.hpp"#include <iostream>#include <vector>#include <cmath>using namespace cv;using namespace std;const double pi = 3.1415926f;const double RADIAN = 180.0 / pi;struct line{  int theta;  int r;};vector<struct line> detectLine(Mat &img, int threshold){  vector<struct line> lines;  int diagonal = floor(sqrt(img.rows*img.rows + img.cols*img.cols));  vector< vector<int> >p(360, vector<int>(diagonal));  //統(tǒng)計數(shù)量  for (int j = 0; j < img.rows; j++) {    for (int i = 0; i < img.cols; i++) {      if (img.at<unsigned char>(j, i) > 0){        for (int theta = 0; theta < 360; theta++){          int r = floor(i*cos(theta / RADIAN) + j*sin(theta / RADIAN));          if (r < 0)            continue;          p[theta][r]++;        }      }    }  }  //獲得最大值  for (int theta = 0; theta < 360; theta++){    for (int r = 0; r < diagonal; r++){      int thetaLeft = max(0, theta - 1);      int thetaRight = min(359, theta + 1);      int rLeft = max(0, r - 1);      int rRight = min(diagonal - 1, r + 1);      int tmp = p[theta][r];      if (tmp > threshold        && tmp > p[thetaLeft][rLeft] && tmp > p[thetaLeft][r] && tmp > p[thetaLeft][rRight]        && tmp > p[theta][rLeft] && tmp > p[theta][rRight]        && tmp > p[thetaRight][rLeft] && tmp > p[thetaRight][r] && tmp > p[thetaRight][rRight]){        struct line newline;        newline.theta = theta;        newline.r = r;        lines.push_back(newline);      }    }  }  return lines;}void drawLines(Mat &img, const vector<struct line> &lines){  for (int i = 0; i < lines.size(); i++){    vector<Point> points;    int theta = lines[i].theta;    int r = lines[i].r;    double ct = cos(theta / RADIAN);    double st = sin(theta / RADIAN);    //公式 r = x*ct + y*st    //計算左邊    int y = int(r / st);    if (y >= 0 && y < img.rows){      Point p(0, y);      points.push_back(p);    }    //計算右邊    y = int((r - ct*(img.cols - 1)) / st);    if (y >= 0 && y < img.rows){      Point p(img.cols - 1, y);      points.push_back(p);    }    //計算上邊    int x = int(r / ct);    if (x >= 0 && x < img.cols){      Point p(x, 0);      points.push_back(p);    }    //計算下邊    x = int((r - st*(img.rows - 1)) / ct);    if (x >= 0 && x < img.cols){      Point p(x, img.rows - 1);      points.push_back(p);    }    //畫線    cv::line(img, points[0], points[1], Scalar(255, 0, 0), 5, CV_AA);  }}

方法二:

#include<cv.h>#include<cxcore.h>#include<highgui.h>#include<cstdio>#include<iostream>using namespace std;int main(){  //聲明IplImage指針  IplImage* pFrame = NULL;  IplImage* pCutFrame = NULL;  IplImage* pCutFrImg = NULL;  IplImage* pCutBkImg = NULL;  //聲明CvMat指針  CvMat* pCutFrameMat = NULL;  CvMat* pCutFrMat = NULL;  CvMat* pCutBkMat = NULL;  //聲明CvCapture指針  CvCapture* pCapture = NULL;  //聲明CvMemStorage和CvSeg指針  CvMemStorage* storage = cvCreateMemStorage();  CvSeq* lines = NULL;  //當(dāng)前幀數(shù)  int nFrmNum = 0;  //裁剪的天空高度  int CutHeight = 250;  //窗口命名  cvNamedWindow("video", 1);  //cvNamedWindow("background", 1);  cvNamedWindow("foreground", 1);  //調(diào)整窗口初始位置  cvMoveWindow("video", 300, 30);  cvMoveWindow("background", 100, 100);  cvMoveWindow("foreground", 300, 370);  //不能打開則退出  if (!(pCapture = cvCaptureFromFile("lane.avi"))){    fprintf(stderr, "Can not open video file\n");    return -2;  }  //每次讀取一楨的視頻  while (pFrame = cvQueryFrame(pCapture)){    //設(shè)置ROI裁剪圖像    cvSetImageROI(pFrame, cvRect(0, CutHeight, pFrame->width, pFrame->height - CutHeight));    nFrmNum++;    //第一次要申請內(nèi)存p    if (nFrmNum == 1){      pCutFrame = cvCreateImage(cvSize(pFrame->width, pFrame->height - CutHeight), pFrame->depth, pFrame->nChannels);      cvCopy(pFrame, pCutFrame, 0);      pCutBkImg = cvCreateImage(cvSize(pCutFrame->width, pCutFrame->height), IPL_DEPTH_8U, 1);      pCutFrImg = cvCreateImage(cvSize(pCutFrame->width, pCutFrame->height), IPL_DEPTH_8U, 1);      pCutBkMat = cvCreateMat(pCutFrame->height, pCutFrame->width, CV_32FC1);      pCutFrMat = cvCreateMat(pCutFrame->height, pCutFrame->width, CV_32FC1);      pCutFrameMat = cvCreateMat(pCutFrame->height, pCutFrame->width, CV_32FC1);      //轉(zhuǎn)化成單通道圖像再處理      cvCvtColor(pCutFrame, pCutBkImg, CV_BGR2GRAY);      cvCvtColor(pCutFrame, pCutFrImg, CV_BGR2GRAY);      //轉(zhuǎn)換成矩陣      cvConvert(pCutFrImg, pCutFrameMat);      cvConvert(pCutFrImg, pCutFrMat);      cvConvert(pCutFrImg, pCutBkMat);    }    else{      //獲得剪切圖      cvCopy(pFrame, pCutFrame, 0);      //前景圖轉(zhuǎn)換為灰度圖      cvCvtColor(pCutFrame, pCutFrImg, CV_BGR2GRAY);      cvConvert(pCutFrImg, pCutFrameMat);      //高斯濾波先,以平滑圖像      cvSmooth(pCutFrameMat, pCutFrameMat, CV_GAUSSIAN, 3, 0, 0.0);      //當(dāng)前幀跟背景圖相減      cvAbsDiff(pCutFrameMat, pCutBkMat, pCutFrMat);      //二值化前景圖      cvThreshold(pCutFrMat, pCutFrImg, 35, 255.0, CV_THRESH_BINARY);      //進行形態(tài)學(xué)濾波,去掉噪音      cvErode(pCutFrImg, pCutFrImg, 0, 1);      cvDilate(pCutFrImg, pCutFrImg, 0, 1);      //更新背景      cvRunningAvg(pCutFrameMat, pCutBkMat, 0.003, 0);      //pCutBkMat = cvCloneMat(pCutFrameMat);      //將背景轉(zhuǎn)化為圖像格式,用以顯示      //cvConvert(pCutBkMat, pCutBkImg);      cvCvtColor(pCutFrame, pCutBkImg, CV_BGR2GRAY);      //canny變化      cvCanny(pCutFrImg, pCutFrImg, 50, 100);      #pragma region Hough檢測      lines = cvHoughLines2(pCutFrImg, storage, CV_HOUGH_PROBABILISTIC, 1, CV_PI / 180, 100, 30, 15);      printf("Lines number: %d\n", lines->total);      //畫出直線      for (int i = 0; i<lines->total; i++){        CvPoint* line = (CvPoint* )cvGetSeqElem(lines, i);        cvLine(pCutFrame, line[0], line[1], CV_RGB(255, 0, 0), 6, CV_AA);      }      #pragma endregion      //顯示圖像      cvShowImage("video", pCutFrame);      cvShowImage("background", pCutBkImg);      cvShowImage("foreground", pCutFrImg);      //按鍵事件,空格暫停,其他跳出循環(huán)      int temp = cvWaitKey(2);      if (temp == 32){        while (cvWaitKey() == -1);      }      else if (temp >= 0){        break;      }    }    //恢復(fù)ROI區(qū)域(多余可去掉)    cvResetImageROI(pFrame);  }  //銷毀窗口  cvDestroyWindow("video");  cvDestroyWindow("background");  cvDestroyWindow("foreground");  //釋放圖像和矩陣  cvReleaseImage(&pCutFrImg);  cvReleaseImage(&pCutBkImg);  cvReleaseImage(&pCutFrame);  cvReleaseMat(&pCutFrameMat);  cvReleaseMat(&pCutFrMat);  cvReleaseMat(&pCutBkMat);  cvReleaseCapture(&pCapture);  return 0;}

以上就是opencv中怎么實現(xiàn)車道線檢測功能,小編相信有部分知識點可能是我們?nèi)粘9ぷ鲿姷交蛴玫降摹OM隳芡ㄟ^這篇文章學(xué)到更多知識。更多詳情敬請關(guān)注億速云行業(yè)資訊頻道。

向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI