您好,登錄后才能下訂單哦!
今天就跟大家聊聊有關(guān)OpenCV中的numpy如何在Python項目中使用 ,可能很多人都不太了解,為了讓大家更加了解,小編給大家總結(jié)了以下內(nèi)容,希望大家根據(jù)這篇文章可以有所收獲。
Python OpenCV存儲圖像使用的是Numpy存儲,所以可以將Numpy當做圖像類型操作,操作之前還需進行類型轉(zhuǎn)換,轉(zhuǎn)換到int8類型
import cv2 import numpy as np # 使用numpy方式創(chuàng)建一個二維數(shù)組 img = np.ones((100,100)) # 轉(zhuǎn)換成int8類型 img = np.int8(img) # 顏色空間轉(zhuǎn)換,單通道轉(zhuǎn)換成多通道, 可選可不選 img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) cv2.imwrite("demo.jpg", img)
補充知識:Python中讀取圖片并轉(zhuǎn)化為numpy.ndarray()數(shù)據(jù)的6種方式
方式: 返回類型
OpenCV np.ndarray
PIL PIL.JpegImagePlugin.JpegImageFile
keras.preprocessing.image PIL.JpegImagePlugin.JpegImageFile
Skimage.io np.ndarray
matplotlib.pyplot np.ndarray
matplotlib.image np.ndarray
import numpy as np import cv2 from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img from PIL import Image import skimage.io as io import matplotlib.pyplot as plt import matplotlib.image as mpig ''' 方式: 返回類型 OpenCV np.ndarray PIL PIL.JpegImagePlugin.JpegImageFile keras.preprocessing.image PIL.JpegImagePlugin.JpegImageFile Skimage.io np.ndarray matplotlib.pyplot np.ndarray matplotlib.image np.ndarray ''' imagePath="E:/DataSet/test1/trainSet/bus/300.jpg" ''' 方式一:使用OpenCV ''' img1=cv2.imread(imagePath) print("img1:",img1.shape) print("img1:",type(img1)) print("-"*10) ''' 方式二:使用PIL ''' img2=Image.open(imagePath) print("img2:",img2) print("img2:",type(img2)) #轉(zhuǎn)換成np.ndarray格式 img2=np.array(img2) print("img2:",img2.shape) print("img2:",type(img2)) print("-"*10) ''' 方式三:使用keras.preprocessing.image ''' img3=load_img(imagePath) print("img3:",img3) print("img3:",type(img3)) #轉(zhuǎn)換成np.ndarray格式,使用np.array(),或者使用keras里的img_to_array() #使用np.array() #img3=np.array(img2) #使用keras里的img_to_array() img3=img_to_array(img3) print("img3:",img3.shape) print("img3:",type(img3)) print("-"*10) ''' 方式四:使用Skimage.io ''' img4=io.imread(imagePath) print("img4:",img4.shape) print("img4:",type(img4)) print("-"*10) ''' 方式五:使用matplotlib.pyplot ''' img5=plt.imread(imagePath) print("img5:",img5.shape) print("img5:",type(img5)) print("-"*10) ''' 方式六:使用matplotlib.image ''' img6=mpig.imread(imagePath) print("img6:",img6.shape) print("img6:",type(img6)) print("-"*10)
運行結(jié)果:
Using TensorFlow backend. img1: (256, 384, 3) img1: <class 'numpy.ndarray'> ---------- img2: <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=384x256 at 0x249608A8C50> img2: <class 'PIL.JpegImagePlugin.JpegImageFile'> img2: (256, 384, 3) img2: <class 'numpy.ndarray'> ---------- img3: <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=384x256 at 0x2496B5A23C8> img3: <class 'PIL.JpegImagePlugin.JpegImageFile'> img3: (256, 384, 3) img3: <class 'numpy.ndarray'> ---------- img4: (256, 384, 3) img4: <class 'numpy.ndarray'> ---------- img5: (256, 384, 3) img5: <class 'numpy.ndarray'> ---------- img6: (256, 384, 3) img6: <class 'numpy.ndarray'> ----------
看完上述內(nèi)容,你們對OpenCV中的numpy如何在Python項目中使用 有進一步的了解嗎?如果還想了解更多知識或者相關(guān)內(nèi)容,請關(guān)注億速云行業(yè)資訊頻道,感謝大家的支持。
免責聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。