您好,登錄后才能下訂單哦!
本篇文章為大家展示了反向傳播算法如何在python項(xiàng)目中實(shí)現(xiàn),內(nèi)容簡明扼要并且容易理解,絕對(duì)能使你眼前一亮,通過這篇文章的詳細(xì)介紹希望你能有所收獲。
反向傳播的目的是計(jì)算成本函數(shù)C對(duì)網(wǎng)絡(luò)中任意w或b的偏導(dǎo)數(shù)。一旦我們有了這些偏導(dǎo)數(shù),我們將通過一些常數(shù) α的乘積和該數(shù)量相對(duì)于成本函數(shù)的偏導(dǎo)數(shù)來更新網(wǎng)絡(luò)中的權(quán)重和偏差。這是流行的梯度下降算法。而偏導(dǎo)數(shù)給出了最大上升的方向。因此,關(guān)于反向傳播算法,我們繼續(xù)查看下文。
我們向相反的方向邁出了一小步——最大下降的方向,也就是將我們帶到成本函數(shù)的局部最小值的方向。
圖示演示:
反向傳播算法中Sigmoid函數(shù)代碼演示:
# 實(shí)現(xiàn) sigmoid 函數(shù) return 1 / (1 + np.exp(-x)) def sigmoid_derivative(x): # sigmoid 導(dǎo)數(shù)的計(jì)算 return sigmoid(x)*(1-sigmoid(x))
反向傳播算法中ReLU 函數(shù)導(dǎo)數(shù)函數(shù)代碼演示:
def relu_derivative(x): # ReLU 函數(shù)的導(dǎo)數(shù) d = np.array(x, copy=True) # 用于保存梯度的張量 d[x < 0] = 0 # 元素為負(fù)的導(dǎo)數(shù)為 0 d[x >= 0] = 1 # 元素為正的導(dǎo)數(shù)為 1 return d
實(shí)例擴(kuò)展:
BP反向傳播算法Python簡單實(shí)現(xiàn)
import numpy as np # "pd" 偏導(dǎo) def sigmoid(x): return 1 / (1 + np.exp(-x)) def sigmoidDerivationx(y): return y * (1 - y) if __name__ == "__main__": #初始化 bias = [0.35, 0.60] weight = [0.15, 0.2, 0.25, 0.3, 0.4, 0.45, 0.5, 0.55] output_layer_weights = [0.4, 0.45, 0.5, 0.55] i1 = 0.05 i2 = 0.10 target1 = 0.01 target2 = 0.99 alpha = 0.5 #學(xué)習(xí)速率 numIter = 10000 #迭代次數(shù) for i in range(numIter): #正向傳播 neth2 = i1*weight[1-1] + i2*weight[2-1] + bias[0] neth3 = i1*weight[3-1] + i2*weight[4-1] + bias[0] outh2 = sigmoid(neth2) outh3 = sigmoid(neth3) neto1 = outh2*weight[5-1] + outh3*weight[6-1] + bias[1] neto2 = outh3*weight[7-1] + outh3*weight[8-1] + bias[1] outo1 = sigmoid(neto1) outo2 = sigmoid(neto2) print(str(i) + ", target1 : " + str(target1-outo1) + ", target2 : " + str(target2-outo2)) if i == numIter-1: print("lastst result : " + str(outo1) + " " + str(outo2)) #反向傳播 #計(jì)算w5-w8(輸出層權(quán)重)的誤差 pdEOuto1 = - (target1 - outo1) pdOuto1Neto1 = sigmoidDerivationx(outo1) pdNeto1W5 = outh2 pdEW5 = pdEOuto1 * pdOuto1Neto1 * pdNeto1W5 pdNeto1W6 = outh3 pdEW6 = pdEOuto1 * pdOuto1Neto1 * pdNeto1W6 pdEOuto2 = - (target2 - outo2) pdOuto2Neto2 = sigmoidDerivationx(outo2) pdNeto1W7 = outh2 pdEW7 = pdEOuto2 * pdOuto2Neto2 * pdNeto1W7 pdNeto1W8 = outh3 pdEW8 = pdEOuto2 * pdOuto2Neto2 * pdNeto1W8 # 計(jì)算w1-w4(輸出層權(quán)重)的誤差 pdEOuto1 = - (target1 - outo1) #之前算過 pdEOuto2 = - (target2 - outo2) #之前算過 pdOuto1Neto1 = sigmoidDerivationx(outo1) #之前算過 pdOuto2Neto2 = sigmoidDerivationx(outo2) #之前算過 pdNeto1Outh2 = weight[5-1] pdNeto2Outh3 = weight[7-1] pdEOuth2 = pdEOuto1 * pdOuto1Neto1 * pdNeto1Outh2 + pdEOuto2 * pdOuto2Neto2 * pdNeto1Outh2 pdOuth2Neth2 = sigmoidDerivationx(outh2) pdNeth2W1 = i1 pdNeth2W2 = i2 pdEW1 = pdEOuth2 * pdOuth2Neth2 * pdNeth2W1 pdEW2 = pdEOuth2 * pdOuth2Neth2 * pdNeth2W2 pdNeto1Outh3 = weight[6-1] pdNeto2Outh3 = weight[8-1] pdOuth3Neth3 = sigmoidDerivationx(outh3) pdNeth3W3 = i1 pdNeth3W4 = i2 pdEOuth3 = pdEOuto1 * pdOuto1Neto1 * pdNeto1Outh3 + pdEOuto2 * pdOuto2Neto2 * pdNeto2Outh3 pdEW3 = pdEOuth3 * pdOuth3Neth3 * pdNeth3W3 pdEW4 = pdEOuth3 * pdOuth3Neth3 * pdNeth3W4 #權(quán)重更新 weight[1-1] = weight[1-1] - alpha * pdEW1 weight[2-1] = weight[2-1] - alpha * pdEW2 weight[3-1] = weight[3-1] - alpha * pdEW3 weight[4-1] = weight[4-1] - alpha * pdEW4 weight[5-1] = weight[5-1] - alpha * pdEW5 weight[6-1] = weight[6-1] - alpha * pdEW6 weight[7-1] = weight[7-1] - alpha * pdEW7 weight[8-1] = weight[8-1] - alpha * pdEW8 # print(weight[1-1]) # print(weight[2-1]) # print(weight[3-1]) # print(weight[4-1]) # print(weight[5-1]) # print(weight[6-1]) # print(weight[7-1]) # print(weight[8-1])
上述內(nèi)容就是反向傳播算法如何在python項(xiàng)目中實(shí)現(xiàn),你們學(xué)到知識(shí)或技能了嗎?如果還想學(xué)到更多技能或者豐富自己的知識(shí)儲(chǔ)備,歡迎關(guān)注億速云行業(yè)資訊頻道。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請(qǐng)聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。