您好,登錄后才能下訂單哦!
這篇文章將為大家詳細(xì)講解有關(guān)使用python如何實(shí)現(xiàn)計(jì)算auc,文章內(nèi)容質(zhì)量較高,因此小編分享給大家做個(gè)參考,希望大家閱讀完這篇文章后對(duì)相關(guān)知識(shí)有一定的了解。
1、安裝scikit-learn
1.1 Scikit-learn 依賴
分別查看上述三個(gè)依賴的版本:
python -V
結(jié)果:
Python 2.7.3
python -c 'import scipy; print scipy.version.version'
scipy版本結(jié)果:
0.9.0
python -c "import numpy; print numpy.version.version"
numpy結(jié)果:
1.10.2
1.2 Scikit-learn安裝
如果你已經(jīng)安裝了NumPy、SciPy和python并且均滿足1.1中所需的條件,那么可以直接運(yùn)行sudo
pip install - U scikit - learn
執(zhí)行安裝。
2、計(jì)算auc指標(biāo)
import numpy as np from sklearn.metrics import roc_auc_score y_true = np.array([0, 0, 1, 1]) y_scores = np.array([0.1, 0.4, 0.35, 0.8]) roc_auc_score(y_true, y_scores)
輸出:
0.75
3、計(jì)算roc曲線
import numpy as np from sklearn import metrics y = np.array([1, 1, 2, 2]) #實(shí)際值 scores = np.array([0.1, 0.4, 0.35, 0.8]) #預(yù)測(cè)值 fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2) #pos_label=2,表示值為2的實(shí)際值為正樣本 print fpr print tpr print thresholds
輸出:
array([ 0. , 0.5, 0.5, 1. ]) array([ 0.5, 0.5, 1. , 1. ]) array([ 0.8 , 0.4 , 0.35, 0.1 ])
關(guān)于使用python如何實(shí)現(xiàn)計(jì)算auc就分享到這里了,希望以上內(nèi)容可以對(duì)大家有一定的幫助,可以學(xué)到更多知識(shí)。如果覺得文章不錯(cuò),可以把它分享出去讓更多的人看到。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。