溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Node.js中多線程是什么

發(fā)布時間:2020-08-15 11:25:43 來源:億速云 閱讀:125 作者:小新 欄目:web開發(fā)

這篇文章主要介紹了Node.js中多線程是什么,具有一定借鑒價值,需要的朋友可以參考下。希望大家閱讀完這篇文章后大有收獲。下面讓小編帶著大家一起了解一下。

很多人都想知道單線程的 Node.js 怎么能與多線程后端競爭??紤]到其所謂的單線程特性,許多大公司選擇 Node 作為其后端似乎違反直覺。要想知道原因,必須理解其單線程的真正含義?!疽曨l教程推薦:nodejs視頻教程 】

JavaScript 的設計非常適合在網上做比較簡單的事情,比如驗證表單,或者說創(chuàng)建彩虹色的鼠標軌跡。 在2009年,Node.js的創(chuàng)始人 Ryan Dahl使開發(fā)人員可以用該語言編寫后端代碼。

通常支持多線程的后端語言具有各種機制,用于在線程和其他面向線程的功能之間同步數據。要向 JavaScript 添加對此類功能的支持,需要修改整個語言,這不是 Dahl 的目標。為了讓純 JavaScript 支持多線程,他必須想一個變通方法。接下來讓我們探索一下其中的奧秘……

Node.js 是如何工作的

Node.js 使用兩種線程:event loop 處理的主線程和 worker pool 中的幾個輔助線程。

事件循環(huán)是一種機制,它采用回調(函數)并注冊它們,準備在將來的某個時刻執(zhí)行。它與相關的 JavaScript 代碼在同一個線程中運行。當 JavaScript 操作阻塞線程時,事件循環(huán)也會被阻止。

工作池是一種執(zhí)行模型,它產生并處理單獨的線程,然后同步執(zhí)行任務,并將結果返回到事件循環(huán)。事件循環(huán)使用返回的結果執(zhí)行提供的回調。

簡而言之,它負責異步 I/O操作 —— 主要是與系統(tǒng)磁盤和網絡的交互。它主要由諸如 fs(I/O 密集)或 crypto(CPU 密集)等模塊使用。工作池用 libuv 實現,當 Node 需要在 JavaScript 和 C++ 之間進行內部通信時,會導致輕微的延遲,但這幾乎不可察覺。

基于這兩種機制,我們可以編寫如下代碼:

fs.readFile(path.join(__dirname, './package.json'), (err, content) => {
 if (err) {
   return null;
 }

 console.log(content.toString());
});

前面提到的 fs 模塊告訴工作池使用其中一個線程來讀取文件的內容,并在完成后通知事件循環(huán)。然后事件循環(huán)獲取提供的回調函數,并用文件的內容執(zhí)行它。

以上是非阻塞代碼的示例,我們不必同步等待某事的發(fā)生。只需告訴工作池去讀取文件,并用結果去調用提供的函數即可。由于工作池有自己的線程,因此事件循環(huán)可以在讀取文件時繼續(xù)正常執(zhí)行。

在不需要同步執(zhí)行某些復雜操作時,這一切都相安無事:任何運行時間太長的函數都會阻塞線程。如果應用程序中有大量這類功能,就可能會明顯降低服務器的吞吐量,甚至完全凍結它。在這種情況下,無法繼續(xù)將工作委派給工作池。

在需要對數據進行復雜的計算時(如AI、機器學習或大數據)無法真正有效地使用 Node.js,因為操作阻塞了主(且唯一)線程,使服務器無響應。在 Node.js v10.5.0 發(fā)布之前就是這種情況,在這一版本增加了對多線程的支持。

簡介:worker_threads

worker_threads 模塊允許我們創(chuàng)建功能齊全的多線程 Node.js 程序。

thread worker 是在單獨的線程中生成的一段代碼(通常從文件中取出)。

注意,術語 thread worker,workerthread 經常互換使用,他們都指的是同一件事。

要想使用 thread worker,必須導入 worker_threads 模塊。讓我們先寫一個函數來幫助我們生成這些thread worker,然后再討論它們的屬性。

type WorkerCallback = (err: any, result?: any) => any;

export function runWorker(path: string, cb: WorkerCallback, workerData: object | null = null) {
 const worker = new Worker(path, { workerData });

 worker.on('message', cb.bind(null, null));
 worker.on('error', cb);

 worker.on('exit', (exitCode) => {
   if (exitCode === 0) {
     return null;
   }

   return cb(new Error(`Worker has stopped with code ${exitCode}`));
 });

 return worker;
}

要創(chuàng)建一個 worker,首先必須創(chuàng)建一個 Worker 類的實例。它的第一個參數提供了包含 worker 的代碼的文件的路徑;第二個參數提供了一個名為 workerData 的包含一個屬性的對象。這是我們希望線程在開始運行時可以訪問的數據。

請注意:不管你是用的是 JavaScript, 還是最終要轉換為 JavaScript 的語言(例如,TypeScript),路徑應該始終引用帶有 .js.mjs 擴展名的文件。

我還想指出為什么使用回調方法,而不是返回在觸發(fā)  message  事件時將解決的 promise。這是因為 worker 可以發(fā)送許多  message  事件,而不是一個。

正如你在上面的例子中所看到的,線程間的通信是基于事件的,這意味著我們設置了 worker 在發(fā)送給定事件后調用的偵聽器。

以下是最常見的事件:

worker.on('error', (error) => {});

只要 worker 中有未捕獲的異常,就會發(fā)出 error 事件。然后終止 worker,錯誤可以作為提供的回調中的第一個參數。

worker.on('exit', (exitCode) => {});

在 worker 退出時會發(fā)出 exit 事件。如果在worker中調用了 process.exit(),那么 exitCode 將被提供給回調。如果 worker 以 worker.terminate() 終止,則代碼為1。

worker.on('online', () => {});

只要 worker 停止解析 JavaScript 代碼并開始執(zhí)行,就會發(fā)出 online 事件。它不常用,但在特定情況下可以提供信息。

worker.on('message', (data) => {});

只要 worker 將數據發(fā)送到父線程,就會發(fā)出 message 事件。

現在讓我們來看看如何在線程之間共享數據。

在線程之間交換數據

要將數據發(fā)送到另一個線程,可以用 port.postMessage() 方法。它的原型如下:

port.postMessage(data[, transferList])

port 對象可以是 parentPort,也可以是 MessagePort 的實例 —— 稍后會詳細講解。

數據參數

第一個參數 —— 這里被稱為 data —— 是一個被復制到另一個線程的對象。它可以是復制算法所支持的任何內容。

數據由結構化克隆算法進行復制。引用自 Mozilla:

它通過遞歸輸入對象來進行克隆,同時保持之前訪問過的引用的映射,以避免無限遍歷循環(huán)。

該算法不復制函數、錯誤、屬性描述符或原型鏈。還需要注意的是,以這種方式復制對象與使用 JSON 不同,因為它可以包含循環(huán)引用和類型化數組,而 JSON 不能。

由于能夠復制類型化數組,該算法可以在線程之間共享內存。

在線程之間共享內存

人們可能會說像 clusterchild_process 這樣的模塊在很久以前就開始使用線程了。這話對,也不對。

cluster 模塊可以創(chuàng)建多個節(jié)點實例,其中一個主進程在它們之間對請求進行路由。集群能夠有效地增加服務器的吞吐量;但是我們不能用 cluster 模塊生成一個單獨的線程。

人們傾向于用 PM2 這樣的工具來集中管理他們的程序,而不是在自己的代碼中手動執(zhí)行,如果你有興趣,可以研究一下如何使用 cluster 模塊。

child_process 模塊可以生成任何可執(zhí)行文件,無論它是否是用 JavaScript 寫的。它和 worker_threads 非常相似,但缺少后者的幾個重要功能。

具體來說 thread workers 更輕量,并且與其父線程共享相同的進程 ID。它們還可以與父線程共享內存,這樣可以避免對大的數據負載進行序列化,從而更有效地來回傳遞數據。

現在讓我們看一下如何在線程之間共享內存。為了共享內存,必須將  ArrayBufferSharedArrayBuffer 的實例作為數據參數發(fā)送到另一個線程。

這是一個與其父線程共享內存的 worker:

import { parentPort } from 'worker_threads';

parentPort.on('message', () => {
 const numberOfElements = 100;
 const sharedBuffer = new SharedArrayBuffer(Int32Array.BYTES_PER_ELEMENT * numberOfElements);
 const arr = new Int32Array(sharedBuffer);

 for (let i = 0; i < numberOfElements; i += 1) {
   arr[i] = Math.round(Math.random() * 30);
 }

 parentPort.postMessage({ arr });
});

首先,我們創(chuàng)建一個 SharedArrayBuffer,其內存需要包含100個32位整數。接下來創(chuàng)建一個 Int32Array 實例,它將用緩沖區(qū)來保存其結構,然后用一些隨機數填充數組并將其發(fā)送到父線程。

在父線程中:

import path from 'path';

import { runWorker } from '../run-worker';

const worker = runWorker(path.join(__dirname, 'worker.js'), (err, { arr }) => {
 if (err) {
   return null;
 }

 arr[0] = 5;
});

worker.postMessage({});

arr [0] 的值改為5,實際上會在兩個線程中修改它。

當然,通過共享內存,我們冒險在一個線程中修改一個值,同時也在另一個線程中進行了修改。但是我們在這個過程中也得到了一個好處:該值不需要進行序列化就可以另一個線程中使用,這極大地提高了效率。只需記住管理數據正確的引用,以便在完成數據處理后對其進行垃圾回收。

共享一個整數數組固然很好,但我們真正感興趣的是共享對象 —— 這是存儲信息的默認方式。不幸的是,沒有 SharedObjectBuffer 或類似的東西,但我們可以自己創(chuàng)建一個類似的結構。

transferList參數

transferList 中只能包含 ArrayBufferMessagePort。一旦它們被傳送到另一個線程,就不能再次被傳送了;因為內存里的內容已經被移動到了另一個線程。

目前,還不能通過 transferList(可以使用 child_process 模塊)來傳輸網絡套接字。

創(chuàng)建通信渠道

線程之間的通信是通過 port 進行的,port 是 MessagePort 類的實例,并啟用基于事件的通信。

使用 port 在線程之間進行通信的方法有兩種。第一個是默認值,這個方法比較容易。在 worker 的代碼中,我們從worker_threads 模塊導入一個名為 parentPort 的對象,并使用對象的 .postMessage() 方法將消息發(fā)送到父線程。

這是一個例子:

import { parentPort } from 'worker_threads';
const data = {
 // ...
};

parentPort.postMessage(data);

parentPort 是 Node.js 在幕后創(chuàng)建的 MessagePort 實例,用于與父線程進行通信。這樣就可以用 parentPortworker 對象在線程之間進行通信。

線程間的第二種通信方式是創(chuàng)建一個 MessageChannel 并將其發(fā)送給 worker。以下代碼是如何創(chuàng)建一個新的 MessagePort 并與我們的 worker 共享它:

import path from 'path';
import { Worker, MessageChannel } from 'worker_threads';

const worker = new Worker(path.join(__dirname, 'worker.js'));

const { port1, port2 } = new MessageChannel();

port1.on('message', (message) => {
 console.log('message from worker:', message);
});

worker.postMessage({ port: port2 }, [port2]);

在創(chuàng)建 port1port2 之后,我們在 port1 上設置事件監(jiān)聽器并將 port2 發(fā)送給 worker。我們必須將它包含在 transferList 中,以便將其傳輸給 worker 。

在 worker 內部:

import { parentPort, MessagePort } from 'worker_threads';

parentPort.on('message', (data) => {
 const { port }: { port: MessagePort } = data;

 port.postMessage('heres your message!');
});

這樣,我們就能使用父線程發(fā)送的 port 了。

使用 parentPort 不一定是錯誤的方法,但最好用 MessageChannel 的實例創(chuàng)建一個新的 MessagePort,然后與生成的 worker 共享它。

請注意,在后面的例子中,為了簡便起見,我用了 parentPort

使用 worker 的兩種方式

可以通過兩種方式使用 worker。第一種是生成一個 worker,然后執(zhí)行它的代碼,并將結果發(fā)送到父線程。通過這種方法,每當出現新任務時,都必須重新創(chuàng)建一個工作者。

第二種方法是生成一個 worker 并為 message 事件設置監(jiān)聽器。每次觸發(fā) message 時,它都會完成工作并將結果發(fā)送回父線程,這會使 worker 保持活動狀態(tài)以供以后使用。

Node.js 文檔推薦第二種方法,因為在創(chuàng)建 thread worker 時需要創(chuàng)建虛擬機并解析和執(zhí)行代碼,這會產生比較大的開銷。所以這種方法比不斷產生新 worker 的效率更高。

這種方法被稱為工作池,因為我們創(chuàng)建了一個工作池并讓它們等待,在需要時調度 message 事件來完成工作。

以下是一個產生、執(zhí)行然后關閉 worker 例子:

import { parentPort } from 'worker_threads';

const collection = [];

for (let i = 0; i < 10; i += 1) {
 collection[i] = i;
}

parentPort.postMessage(collection);

collection 發(fā)送到父線程后,它就會退出。

下面是一個 worker 的例子,它可以在給定任務之前等待很長一段時間:

import { parentPort } from 'worker_threads';

parentPort.on('message', (data: any) => {
 const result = doSomething(data);

 parentPort.postMessage(result);
});

worker_threads 模塊中可用的重要屬性

worker_threads 模塊中有一些可用的屬性:

isMainThread

當不在工作線程內操作時,該屬性為 true 。如果你覺得有必要,可以在 worker 文件的開頭包含一個簡單的 if 語句,以確保它只作為 worker 運行。

import { isMainThread } from 'worker_threads';

if (isMainThread) {
 throw new Error('Its not a worker');
}
workerData

產生線程時包含在 worker 的構造函數中的數據。

const worker = new Worker(path, { workerData });

在工作線程中:

import { workerData } from 'worker_threads';

console.log(workerData.property);
parentPort

前面提到的 MessagePort 實例,用于與父線程通信。

threadId

分配給 worker 的唯一標識符。


現在我們知道了技術細節(jié),接下來實現一些東西并在實踐中檢驗學到的知識。

實現 setTimeout

setTimeout 是一個無限循環(huán),顧名思義,用來檢測程序運行時間是否超時。它在循環(huán)中檢查起始時間與給定毫秒數之和是否小于實際日期。

import { parentPort, workerData } from 'worker_threads';

const time = Date.now();

while (true) {
    if (time + workerData.time <= Date.now()) {
        parentPort.postMessage({});
        break;
    }
}

這個特定的實現產生一個線程,然后執(zhí)行它的代碼,最后在完成后退出。

接下來實現使用這個 worker 的代碼。首先創(chuàng)建一個狀態(tài),用它來跟蹤生成的 worker:

const timeoutState: { [key: string]: Worker } = {};

然后時負責創(chuàng)建 worker 并將其保存到狀態(tài)的函數:

export function setTimeout(callback: (err: any) => any, time: number) {
 const id = uuidv4();

 const worker = runWorker(
   path.join(__dirname, './timeout-worker.js'),
   (err) => {
     if (!timeoutState[id]) {
       return null;
     }

     timeoutState[id] = null;

     if (err) {
       return callback(err);
     }

     callback(null);
   },
   {
     time,
   },
 );

 timeoutState[id] = worker;

 return id;
}

首先,我們使用 UUID 包為 worker 創(chuàng)建一個唯一的標識符,然后用先前定義的函數 runWorker 來獲取 worker。我們還向 worker 傳入一個回調函數,一旦 worker 發(fā)送了數據就會被觸發(fā)。最后,把 worker 保存在狀態(tài)中并返回 id。

在回調函數中,我們必須檢查該 worker 是否仍然存在于該狀態(tài)中,因為有可能會 cancelTimeout(),這將會把它刪除。如果確實存在,就把它從狀態(tài)中刪除,并調用傳給 setTimeout 函數的 callback

cancelTimeout 函數使用 .terminate() 方法強制 worker 退出,并從該狀態(tài)中刪除該這個worker:

export function cancelTimeout(id: string) {
 if (timeoutState[id]) {
   timeoutState[id].terminate();

   timeoutState[id] = undefined;

   return true;
 }

 return false;
}

如果你有興趣,我也實現了 setInterval,代碼在這里,但因為它對線程什么都沒做(我們重用setTimeout的代碼),所以我決定不在這里進行解釋。

我已經創(chuàng)建了一個短小的測試代碼,目的是檢查這種方法與原生方法的不同之處。你可以在這里找到代碼。這些是結果:

native setTimeout { ms: 7004, averageCPUCost: 0.1416 }
worker setTimeout { ms: 7046, averageCPUCost: 0.308 }

我們可以看到 setTimeout 有一點延遲 - 大約40ms  - 這時 worker 被創(chuàng)建時的消耗。平均 CPU 成本也略高,但沒什么難以忍受的(CPU 成本是整個過程持續(xù)時間內 CPU 使用率的平均值)。

如果我們可以重用 worker,就能夠降低延遲和 CPU 使用率,這就是要實現工作池的原因。

實現工作池

如上所述,工作池是給定數量的被事先創(chuàng)建的 worker,他們保持空閑并監(jiān)聽 message 事件。一旦 message 事件被觸發(fā),他們就會開始工作并發(fā)回結果。

為了更好地描述我們將要做的事情,下面我們來創(chuàng)建一個由八個 thread worker 組成的工作池:

const pool = new WorkerPool(path.join(__dirname, './test-worker.js'), 8);

如果你熟悉限制并發(fā)操作,那么你在這里看到的邏輯幾乎相同,只是一個不同的用例。

如上面的代碼片段所示,我們把指向 worker 的路徑和要生成的 worker 數量傳給了 WorkerPool 的構造函數。

export class WorkerPool<T, N> {
 private queue: QueueItem<T, N>[] = [];
 private workersById: { [key: number]: Worker } = {};
 private activeWorkersById: { [key: number]: boolean } = {};

 public constructor(public workerPath: string, public numberOfThreads: number) {
   this.init();
 }
}

這里還有其他一些屬性,如 workersByIdactiveWorkersById,我們可以分別保存現有的 worker 和當前正在運行的 worker 的 ID。還有 queue,我們可以使用以下結構來保存對象:

type QueueCallback<N> = (err: any, result?: N) => void;

interface QueueItem<T, N> {
 callback: QueueCallback<N>;
 getData: () => T;
}

callback 只是默認的節(jié)點回調,第一個參數是錯誤,第二個參數是可能的結果。 getData 是傳遞給工作池 .run() 方法的函數(如下所述),一旦項目開始處理就會被調用。 getData 函數返回的數據將傳給工作線程。

.init() 方法中,我們創(chuàng)建了 worker 并將它們保存在以下狀態(tài)中:

private init() {
  if (this.numberOfThreads < 1) {
    return null;
  }

  for (let i = 0; i < this.numberOfThreads; i += 1) {
    const worker = new Worker(this.workerPath);

    this.workersById[i] = worker;
    this.activeWorkersById[i] = false;
  }
}

為避免無限循環(huán),我們首先要確保線程數 > 1。然后創(chuàng)建有效的 worker 數,并將它們的索引保存在 workersById 狀態(tài)。我們在 activeWorkersById 狀態(tài)中保存了它們當前是否正在運行的信息,默認情況下該狀態(tài)始終為false。

現在我們必須實現前面提到的 .run() 方法來設置一個 worker 可用的任務。

public run(getData: () => T) {
  return new Promise<N>((resolve, reject) => {
    const availableWorkerId = this.getInactiveWorkerId();

    const queueItem: QueueItem<T, N> = {
      getData,
      callback: (error, result) => {
        if (error) {
          return reject(error);
        }
return resolve(result);
      },
    };

    if (availableWorkerId === -1) {
      this.queue.push(queueItem);

      return null;
    }

    this.runWorker(availableWorkerId, queueItem);
  });
}

在 promise 函數里,我們首先通過調用 .getInactiveWorkerId() 來檢查是否存在空閑的 worker 可以來處理數據:

private getInactiveWorkerId(): number {
  for (let i = 0; i < this.numberOfThreads; i += 1) {
    if (!this.activeWorkersById[i]) {
      return i;
    }
  }

  return -1;
}

接下來,我們創(chuàng)建一個 queueItem,在其中保存?zhèn)鬟f給 .run() 方法的 getData 函數以及回調。在回調中,我們要么 resolve 或者 reject promise,這取決于 worker 是否將錯誤傳遞給回調。

如果 availableWorkerId 的值是 -1,意味著當前沒有可用的 worker,我們將 queueItem 添加到 queue。如果有可用的 worker,則調用 .runWorker() 方法來執(zhí)行 worker。

.runWorker() 方法中,我們必須把當前 worker 的 activeWorkersById 設置為使用狀態(tài);為 messageerror 事件設置事件監(jiān)聽器(并在之后清理它們);最后將數據發(fā)送給 worker。

private async runWorker(workerId: number, queueItem: QueueItem<T, N>) {
 const worker = this.workersById[workerId];

 this.activeWorkersById[workerId] = true;

 const messageCallback = (result: N) => {
   queueItem.callback(null, result);

   cleanUp();
 };

 const errorCallback = (error: any) => {
   queueItem.callback(error);

   cleanUp();
 };

 const cleanUp = () => {
   worker.removeAllListeners('message');
   worker.removeAllListeners('error');

   this.activeWorkersById[workerId] = false;

   if (!this.queue.length) {
     return null;
   }

   this.runWorker(workerId, this.queue.shift());
 };

 worker.once('message', messageCallback);
 worker.once('error', errorCallback);

 worker.postMessage(await queueItem.getData());
}

首先,通過使用傳遞的 workerId,我們從 workersById 中獲得 worker 引用。然后,在 activeWorkersById 中,將 [workerId] 屬性設置為true,這樣我們就能知道在 worker 在忙,不要運行其他任務。

接下來,分別創(chuàng)建 messageCallbackerrorCallback 用來在消息和錯誤事件上調用,然后注冊所述函數來監(jiān)聽事件并將數據發(fā)送給 worker。

在回調中,我們調用 queueItem 的回調,然后調用 cleanUp 函數。在 cleanUp 函數中,要刪除事件偵聽器,因為我們會多次重用同一個 worker。如果沒有刪除監(jiān)聽器的話就會發(fā)生內存泄漏,內存會被慢慢耗盡。

activeWorkersById 狀態(tài)中,我們將 [workerId] 屬性設置為 false,并檢查隊列是否為空。如果不是,就從 queue 中刪除第一個項目,并用另一個 queueItem 再次調用 worker。

接著創(chuàng)建一個在收到 message 事件中的數據后進行一些計算的 worker:

import { isMainThread, parentPort } from 'worker_threads';

if (isMainThread) {
 throw new Error('Its not a worker');
}

const doCalcs = (data: any) => {
 const collection = [];

 for (let i = 0; i < 1000000; i += 1) {
   collection[i] = Math.round(Math.random() * 100000);
 }

 return collection.sort((a, b) => {
   if (a > b) {
     return 1;
   }

   return -1;
 });
};

parentPort.on('message', (data: any) => {
 const result = doCalcs(data);

 parentPort.postMessage(result);
});

worker 創(chuàng)建了一個包含 100 萬個隨機數的數組,然后對它們進行排序。只要能夠多花費一些時間才能完成,做些什么事情并不重要。

以下是工作池簡單用法的示例:

const pool = new WorkerPool<{ i: number }, number>(path.join(__dirname, './test-worker.js'), 8);

const items = [...new Array(100)].fill(null);

Promise.all(
 items.map(async (_, i) => {
   await pool.run(() => ({ i }));

   console.log('finished', i);
 }),
).then(() => {
 console.log('finished all');
});

首先創(chuàng)建一個由八個 worker 組成的工作池。然后創(chuàng)建一個包含 100 個元素的數組,對于每個元素,我們在工作池中運行一個任務。開始運行后將立即執(zhí)行八個任務,其余任務被放入隊列并逐個執(zhí)行。通過使用工作池,我們不必每次都創(chuàng)建一個 worker,從而大大提高了效率。

結論

worker_threads 提供了一種為程序添加多線程支持的簡單的方法。通過將繁重的 CPU 計算委托給其他線程,可以顯著提高服務器的吞吐量。通過官方線程支持,我們可以期待更多來自AI、機器學習和大數據等領域的開發(fā)人員和工程師使用 Node.js.

感謝你能夠認真閱讀完這篇文章,希望小編分享Node.js中多線程是什么內容對大家有幫助,同時也希望大家多多支持億速云,關注億速云行業(yè)資訊頻道,遇到問題就找億速云,詳細的解決方法等著你來學習!

向AI問一下細節(jié)

免責聲明:本站發(fā)布的內容(圖片、視頻和文字)以原創(chuàng)、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI