您好,登錄后才能下訂單哦!
這篇文章主要講解了“hadoop中怎么部署lzo”,文中的講解內(nèi)容簡(jiǎn)單清晰,易于學(xué)習(xí)與理解,下面請(qǐng)大家跟著小編的思路慢慢深入,一起來研究和學(xué)習(xí)“hadoop中怎么部署lzo”吧!
啟用lzo
啟用lzo的壓縮方式對(duì)于小規(guī)模集群是很有用處,壓縮比率大概能降到原始日志大小的1/3。同時(shí)解壓縮的速度也比較快。
安裝lzo
lzo并不是linux系統(tǒng)原生支持,所以需要下載安裝軟件包。這里至少需要安裝3個(gè)軟件包:lzo, lzop, hadoop-gpl-packaging。
增加索引
gpl-packaging的作用主要是對(duì)壓縮的lzo文件創(chuàng)建索引,否則的話,無論壓縮文件是否大于hdfs的block大小,都只會(huì)按照默認(rèn)啟動(dòng)2個(gè)map操作。
[root@localhost ~]# wget http://www.oberhumer.com/opensource/lzo/download/lzo-2.06.tar.gz[root@localhost ~]# tar -zxvf lzo-2.06.tar.gz[root@localhost ~]# cd lzo-2.06[root@localhost ~]# export CFLAGS=-m64[root@localhost ~]# ./configure -enable-shared -prefix=/usr/local/hadoop/lzo/[root@localhost ~]# make && sudo make install編譯完lzo包之后,會(huì)在/usr/local/hadoop/lzo/生成一些文件。 將/usr/local/hadoop/lzo目錄下的所有文件打包,并同步到集群中的所有機(jī)器上。 在編譯lzo包的時(shí)候,需要一些環(huán)境,可以用下面的命令安裝好lzo編譯環(huán)境 [root@localhost ~]# yum -y install lzo-devel zlib-devel gcc autoconf automake libtool1234567891011121314151617181912345678910111213141516171819
這里下載的是Twitter hadoop-lzo,可以用Maven(如何安裝Maven請(qǐng)參照本博客的《Linux命令行下安裝Maven與配置》)進(jìn)行編譯。 [root@localhost ~]# wget https://github.com/twitter/hadoop-lzo/archive/master.zip下載后的文件名是master,它是一個(gè)zip格式的壓縮包,可以進(jìn)行解壓: [root@localhost ~]# unzip master解壓后的文件夾名為hadoop-lzo-master 當(dāng)然,如果你電腦安裝了git,你也可以用下面的命令去下載 [root@localhost ~]# git clone https://github.com/twitter/hadoop-lzo.githadoop-lzo中的pom.xml依賴了hadoop2.1.0-beta,由于我們這里用到的是Hadoop 2.2.0,所以建議將hadoop版本修改為2.2.0: <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <hadoop.current.version>2.2.0</hadoop.current.version> <hadoop.old.version>1.0.4</hadoop.old.version> </properties> 然后進(jìn)入hadoop-lzo-master目錄,依次執(zhí)行下面的命令 [root@localhost ~]# export CFLAGS=-m64[root@localhost ~]# export CXXFLAGS=-m64[root@localhost ~]# export C_INCLUDE_PATH=/usr/local/hadoop/lzo/include[root@localhost ~]# export LIBRARY_PATH=/usr/local/hadoop/lzo/lib[root@localhost ~]# mvn clean package -Dmaven.test.skip=true[root@localhost ~]# cd target/native/Linux-amd64-64[root@localhost ~]# tar -cBf - -C lib . | tar -xBvf - -C ~[root@localhost ~]# cp ~/libgplcompression* $HADOOP_HOME/lib/native/[root@localhost ~]# cp target/hadoop-lzo-0.4.18-SNAPSHOT.jar $HADOOP_HOME/share/hadoop/common/其實(shí)在tar -cBf – -C lib . | tar -xBvf – -C ~命令之后,會(huì)在~目錄下生成一下幾個(gè)文件: [root@localhost ~]# ls -l1-rw-r--r-- 1 libgplcompression.a2-rw-r--r-- 1 libgplcompression.la3lrwxrwxrwx 1 libgplcompression.so -> libgplcompression.so.0.0.04lrwxrwxrwx 1 libgplcompression.so.0 -> libgplcompression.so.0.0.05-rwxr-xr-x 1 libgplcompression.so.0.0.0其中l(wèi)ibgplcompression.so和libgplcompression.so.0是鏈接文件,指向libgplcompression.so.0.0.0,將剛剛生成的libgplcompression*和target/hadoop-lzo-0.4.18-SNAPSHOT.jar同步到集群中的所有機(jī)器對(duì)應(yīng)的目錄。1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515212345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152
1、在Hadoop中的$HADOOP_HOME/etc/hadoop/hadoop-env.sh加上下面配置: export LD_LIBRARY_PATH=/usr/local/hadoop/lzo/lib 2、在$HADOOP_HOME/etc/hadoop/core-site.xml加上如下配置:<property> <name>io.compression.codecs</name> <value>org.apache.hadoop.io.compress.GzipCodec, org.apache.hadoop.io.compress.DefaultCodec, com.hadoop.compression.lzo.LzoCodec, com.hadoop.compression.lzo.LzopCodec, org.apache.hadoop.io.compress.BZip2Codec </value></property><property> <name>io.compression.codec.lzo.class</name> <value>com.hadoop.compression.lzo.LzoCodec</value></property>3、在$HADOOP_HOME/etc/hadoop/mapred-site.xml加上如下配置<property> <name>mapred.compress.map.output</name> <value>true</value></property><property> <name>mapred.map.output.compression.codec</name> <value>com.hadoop.compression.lzo.LzoCodec</value></property><property> <name>mapred.child.env</name> <value>LD_LIBRARY_PATH=/usr/local/hadoop/lzo/lib</value></property>將剛剛修改的配置文件全部同步到集群的所有機(jī)器上,并重啟Hadoop集群,這樣就可以在Hadoop中使用lzo。123456789101112131415161718192021222324252627282930313233343536123456789101112131415161718192021222324252627282930313233343536
CREATE TABLE lzo ( ip STRING,user STRING,time STRING, request STRING, status STRING,size STRING, rt STRING, referer STRING, agent STRING, forwarded String ) partitioned by (date string, host string )row format delimited fields terminated by '\t'STORED AS INPUTFORMAT "com.hadoop.mapred.DeprecatedLzoTextInputFormat"OUTPUTFORMAT "org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat";12345678910111213141516171819201234567891011121314151617181920
LOAD DATA Local INPATH '/home/hadoop/data/access_20151230_25.log.lzo' INTO TABLE lzo PARTITION(date=20151229,host=25);/home/hadoop/data/access_20151219.log文件的格式如下:xxx.xxx.xx.xxx - [23/Dec/2015:23:22:38 +0800] "GET /ClientGetResourceDetail.action?id=318880&token=Ocm HTTP/1.1" 200 199 0.008 "xxx.com" "Android4.1.2/LENOVO/Lenovo A706/ch_lenovo/80" "-"直接采用lzop /home/hadoop/data/access_20151219.log即可生成lzo格式壓縮文件/home/hadoop/data/access_20151219.log.lzo1234512345
1. 批量lzo文件修改 $HADOOP_HOME/bin/hadoop jar /home/hadoop/hadoop-2.2.0/share/hadoop/common/hadoop-lzo-0.4.20-SNAPSHOT.jar com.hadoop.compression.lzo.DistributedLzoIndexer /user/hive/warehouse/lzo 2. 單個(gè)lzo文件修改 $HADOOP_HOME/bin/hadoop jar /home/hadoop/hadoop-2.2.0/share/hadoop/common/hadoop-lzo-0.4.20-SNAPSHOT.jarcom.hadoop.compression.lzo.LzoIndexer/user/hive/warehouse/lzo/20151228/lzo_test_20151228.lzo1234567891011121312345678910111213
set hive.exec.reducers.max=10; set mapred.reduce.tasks=10;select ip,rt from nginx_lzo limit 10; 在hive的控制臺(tái)能看到類似如下格式輸出,就表示正確了! hive> set hive.exec.reducers.max=10; hive> set mapred.reduce.tasks=10; hive> select ip,rt from lzo limit 10; Total MapReduce jobs = 1Launching Job 1 out of 1Number of reduce tasks is set to 0 since there's no reduce operator Starting Job = job_1388065803340_0009, Tracking URL = http://mycluster:8088/proxy/application_1388065803340_0009/ Kill Command = /home/hadoop/hadoop-2.2.0/bin/hadoop job -kill job_1388065803340_0009 Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 02013-12-27 09:13:39,163 Stage-1 map = 0%, reduce = 0%2013-12-27 09:13:45,343 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.22 sec2013-12-27 09:13:46,369 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.22 sec MapReduce Total cumulative CPU time: 1 seconds 220 msec Ended Job = job_1388065803340_0009 MapReduce Jobs Launched: Job 0: Map: 1 Cumulative CPU: 1.22 sec HDFS Read: 63570 HDFS Write: 315 SUCCESS Total MapReduce CPU Time Spent: 1 seconds 220 msec OK xxx.xxx.xx.xxx "XXX.com"Time taken: 17.498 seconds, Fetched: 10 row(s)123456789101112131415161718192021222324123456789101112131415161718192021222324
感謝各位的閱讀,以上就是“hadoop中怎么部署lzo”的內(nèi)容了,經(jīng)過本文的學(xué)習(xí)后,相信大家對(duì)hadoop中怎么部署lzo這一問題有了更深刻的體會(huì),具體使用情況還需要大家實(shí)踐驗(yàn)證。這里是億速云,小編將為大家推送更多相關(guān)知識(shí)點(diǎn)的文章,歡迎關(guān)注!
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。