您好,登錄后才能下訂單哦!
count(*) group by order by count(*) desc limit x
用來統(tǒng)計 topn。
topn是運(yùn)營的重要指標(biāo),比如排行前10的活躍用戶。
如果數(shù)據(jù)量非常龐大,統(tǒng)計會比較耗時,citus提供了一個topn插件,與HLL類似,核心是使用少量空間存儲聚合過程中的數(shù)據(jù),同時返回一個固定大?。▍?shù)設(shè)置topn.number_of_counters)的JSONB,可用于下次聚合。(注意,PostgreSQL 11支持更強(qiáng)大的hashagg parallel后,聚合大數(shù)據(jù)量已不是問題)
topn插件聚合過程如圖。
對topn的結(jié)果使用topn_union_agg可以再次聚合。
postgres=# \df topn* List of functions Schema | Name | Result data type | Argument data types | Type --------+------------------+-------------------+---------------------+-------- public | topn | SETOF topn_record | jsonb, integer | normal public | topn_add | jsonb | jsonb, text | normal public | topn_add_agg | jsonb | text | agg public | topn_add_trans | internal | internal, text | normal public | topn_pack | jsonb | internal | normal public | topn_union | jsonb | jsonb, jsonb | normal public | topn_union_agg | jsonb | jsonb | agg public | topn_union_trans | internal | internal, jsonb | normal (8 rows)
-- starting from nothing, record that we saw an "a" select topn_add('{}', 'a'); -- => {"a": 1} -- record the sighting of another "a" select topn_add(topn_add('{}', 'a'), 'a'); -- => {"a": 2} -- for normal_rand create extension tablefunc; -- count values from a normal distribution SELECT topn_add_agg(floor(abs(i))::text) FROM normal_rand(1000, 5, 0.7) i; -- => {"2": 1, "3": 74, "4": 420, "5": 425, "6": 77, "7": 3}
從topn jsonb中直接獲取topn的值
postgres=# select (topn(topn_union_agg(agg_prodid),5)).* from reviews_by_prodid; item | frequency --------+----------- 509594 | 66 497599 | 59 505217 | 58 461257 | 58 403111 | 57 (5 rows)
1、所有節(jié)點(diǎn)(包括coordinator, worker)安裝topn軟件
cd ~ . /var/lib/pgsql/.bash_profile git clone https://github.com/citusdata/postgresql-topn cd postgresql-topn USE_PGXS=1 make USE_PGXS=1 make install
2、安裝插件(coordinator)
postgres=# create extension topn; CREATE EXTENSION
3、安裝插件(worker),在coordinator中調(diào)用run_command_on_workers,在所有worker中執(zhí)行。
postgres=# select run_command_on_workers('create extension topn;'); run_command_on_workers -------------------------------------------- (xxx.xxx.xxx.224,1921,t,"CREATE EXTENSION") (xxx.xxx.xxx.225,1921,t,"CREATE EXTENSION") (xxx.xxx.xxx.226,1921,t,"CREATE EXTENSION") (xxx.xxx.xxx.227,1921,t,"CREATE EXTENSION") (xxx.xxx.xxx.229,1921,t,"CREATE EXTENSION") (xxx.xxx.xxx.230,1921,t,"CREATE EXTENSION") (xxx.xxx.xxx.231,1921,t,"CREATE EXTENSION") (xxx.xxx.xxx.232,1921,t,"CREATE EXTENSION") (8 rows)
1、測試表
create table tbl(id serial8,gid int, prodid int, c1 int, c2 int); postgres=# \d tbl Table "public.tbl" Column | Type | Collation | Nullable | Default --------+---------+-----------+----------+--------------------------------- id | bigint | | not null | nextval('tbl_id_seq'::regclass) gid | integer | | | prodid | integer | | | c1 | integer | | | c2 | integer | | | postgres=# alter sequence tbl_id_seq cache 10000; ALTER SEQUENCE
2、寫入2億測試數(shù)據(jù)
vi test.sql \set gid random_gaussian(1,1000,2.5) \set prodid random_gaussian(1,1000000,2.5) \set c1 random(1,3000) \set c2 random(1,100000000) insert into tbl(gid,prodid,c1,c2) values (:gid,:prodid,:c1,:c2); pgbench -M prepared -n -r -P 1 -f ./test.sql -c 64 -j 64 -T 1200
postgres=# select count(*) from tbl; count ----------- 216524755 (1 row) Time: 421.860 ms
3、幾組真實(shí)的TOPN數(shù)據(jù)
postgres=# select gid,count(*) from tbl group by gid order by count(*) desc limit 10; gid | count -----+-------- 494 | 438102 499 | 438017 514 | 437929 506 | 437852 511 | 437546 509 | 437469 495 | 437458 490 | 437320 496 | 437257 500 | 437239 (10 rows) postgres=# select c1,count(*) from tbl group by c1 order by count(*) desc limit 10; c1 | count ------+------- 1370 | 73175 168 | 73121 1016 | 73114 1816 | 73045 1463 | 73020 585 | 72986 1529 | 72974 1857 | 72944 2580 | 72930 298 | 72917 (10 rows) postgres=# select prodid,count(*) from tbl group by prodid order by count(*) desc limit 10; prodid | count --------+------- 516916 | 534 481914 | 534 520680 | 527 530544 | 526 449685 | 523 493560 | 523 520464 | 523 502098 | 522 495170 | 522 501695 | 522 (10 rows)
4、gid維度估值topn (gid唯一值個數(shù)小于等于參數(shù)
topn.number_of_counters
)
結(jié)果精準(zhǔn)
CREATE TABLE reviews_by_gid ( agg jsonb ); SELECT create_reference_table('reviews_by_gid'); INSERT INTO reviews_by_gid SELECT topn_add_agg(gid::text) FROM tbl; postgres=# select (topn(agg,5)).* from reviews_by_gid; item | frequency ------+----------- 494 | 438102 499 | 438017 514 | 437929 506 | 437852 511 | 437546 (5 rows)
5、prodid維度估值topn (prodid唯一值個數(shù)遠(yuǎn)遠(yuǎn)大于等于參數(shù)
topn.number_of_counters
)
結(jié)果偏差非常大。
CREATE TABLE reviews_by_prodid ( agg_prodid jsonb ); SELECT create_reference_table('reviews_by_prodid'); INSERT INTO reviews_by_prodid SELECT topn_add_agg(prodid::text) FROM tbl; postgres=# select (topn(agg_prodid,5)).* from reviews_by_prodid; item | frequency --------+----------- 470098 | 36 531880 | 35 451724 | 34 420093 | 34 522676 | 33 (5 rows)
6、c1維度估值topn (c1唯一值個數(shù)略大于等于參數(shù)
topn.number_of_counters
)
結(jié)果不精準(zhǔn)。
CREATE TABLE reviews_by_c1 ( aggc1 jsonb ); SELECT create_reference_table('reviews_by_c1'); INSERT INTO reviews_by_c1 SELECT topn_add_agg(c1::text) FROM tbl; postgres=# select (topn(aggc1,5)).* from reviews_by_c1; item | frequency ------+----------- 2580 | 37073 1016 | 36162 1983 | 35311 1752 | 35285 2354 | 34740 (5 rows)
造成以上精準(zhǔn)度偏差的原因:
當(dāng)topn hashtable已滿,有新值寫入時,會導(dǎo)致清除hashtable中一半的元素(item, count)pairs(指按count排序后,較小的一半)。
The TopN approximation algorithm keeps a predefined number of frequent items and counters. If a new item already exists among these frequent items, the algorithm increases the item's frequency counter. Else, the algorithm inserts the new item into the counter list when there is enough space. If there isn't enough space, the algorithm evicts the bottom half of all counters. Since we typically keep counters for many more items (e.g. 100*N) than we are actually interested in, the actual top N items are unlikely to get evicted and will typically have accurate counts.
You can increase the algoritm's accuracy by increasing the predefined number of frequent items/counters.
對應(yīng)代碼
/* * PruneHashTable removes some items from the HashTable to decrease its size. It finds * minimum and maximum frequencies first and removes the items which have lower frequency * than the average of them. */ static void PruneHashTable(HTAB *hashTable, int itemLimit, int numberOfRemainingElements) { Size topnArraySize = 0; int topnIndex = 0; FrequentTopnItem *sortedTopnArray = NULL; bool itemAlreadyHashed = false; HASH_SEQ_STATUS status; FrequentTopnItem *currentTask = NULL; FrequentTopnItem *frequentTopnItem = NULL; int index = 0; int hashTableSize = hash_get_num_entries(hashTable); if (hashTableSize <= itemLimit) { return; } /* create an array to copy top-n items and sort them later */ topnArraySize = sizeof(FrequentTopnItem) * hashTableSize; sortedTopnArray = (FrequentTopnItem *) palloc0(topnArraySize); hash_seq_init(&status, hashTable); while ((currentTask = (FrequentTopnItem *) hash_seq_search(&status)) != NULL) { frequentTopnItem = palloc0(sizeof(FrequentTopnItem)); memcpy(frequentTopnItem->key, currentTask->key, sizeof(frequentTopnItem->key)); frequentTopnItem->frequency = currentTask->frequency; sortedTopnArray[topnIndex] = *frequentTopnItem; topnIndex++; } qsort(sortedTopnArray, hashTableSize, sizeof(FrequentTopnItem), compareFrequentTopnItem); for (index = numberOfRemainingElements; index < hashTableSize; index++) { FrequentTopnItem *topnItem = &(sortedTopnArray[index]); hash_search(hashTable, (void *) topnItem->key, HASH_REMOVE, &itemAlreadyHashed); } }
postgres=# load 'topn'; LOAD postgres=# show topn.number_of_counters ; topn.number_of_counters ------------------------- 1000 (1 row) set topn.number_of_counters =20000;
需要在所有節(jié)點(diǎn)(coordinator+worker)操作,例如。
postgresql.conf shared_preload_libraries='citus,topn,pg_stat_statements' topn.number_of_counters=10000
1、建議階段性聚合,并且保證每個階段被聚合的字段,唯一值個數(shù)小于
topn.number_of_counters
,否則會失真。
例如每小時有1萬個活躍用戶,那么
topn.number_of_counters
,建議設(shè)置為1萬或更大,并且按小時聚合。每個小時存一個聚合后的jsonb結(jié)果。需要統(tǒng)計天的結(jié)果時,再將全天的jsonb進(jìn)行聚合。
2、元素個數(shù)大于
topn.number_of_counters
時,會導(dǎo)致topn結(jié)果失真。
https://github.com/citusdata/postgresql-topn
https://docs.citusdata.com/en/v7.5/develop/reference_sql.html
《PostgreSQL count-min sketch top-n 概率計算插件 cms_topn (結(jié)合窗口實(shí)現(xiàn)同比、環(huán)比、滑窗分析等) - 流計算核心功能之一》
原文地址:https://github.com/digoal/blog/blob/master/201809/20180914_01.md
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報,并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。