您好,登錄后才能下訂單哦!
本節(jié)介紹了ExecProcNode的其中一個(gè)Real函數(shù)(ExecHashJoin)。ExecHashJoin函數(shù)實(shí)現(xiàn)了Hash Join算法。
Plan
所有計(jì)劃節(jié)點(diǎn)通過將Plan結(jié)構(gòu)作為第一個(gè)字段從Plan結(jié)構(gòu)“派生”。這確保了在將節(jié)點(diǎn)轉(zhuǎn)換為計(jì)劃節(jié)點(diǎn)時(shí),一切都能正常工作。(在執(zhí)行器中以通用方式傳遞時(shí),節(jié)點(diǎn)指針經(jīng)常被轉(zhuǎn)換為Plan *)
/* ----------------
* Plan node
*
* All plan nodes "derive" from the Plan structure by having the
* Plan structure as the first field. This ensures that everything works
* when nodes are cast to Plan's. (node pointers are frequently cast to Plan*
* when passed around generically in the executor)
* 所有計(jì)劃節(jié)點(diǎn)通過將Plan結(jié)構(gòu)作為第一個(gè)字段從Plan結(jié)構(gòu)“派生”。
* 這確保了在將節(jié)點(diǎn)轉(zhuǎn)換為計(jì)劃節(jié)點(diǎn)時(shí),一切都能正常工作。
* (在執(zhí)行器中以通用方式傳遞時(shí),節(jié)點(diǎn)指針經(jīng)常被轉(zhuǎn)換為Plan *)
*
* We never actually instantiate any Plan nodes; this is just the common
* abstract superclass for all Plan-type nodes.
* 從未實(shí)例化任何Plan節(jié)點(diǎn);這只是所有Plan-type節(jié)點(diǎn)的通用抽象超類。
* ----------------
*/
typedef struct Plan
{
NodeTag type;//節(jié)點(diǎn)類型
/*
* 成本估算信息;estimated execution costs for plan (see costsize.c for more info)
*/
Cost startup_cost; /* 啟動(dòng)成本;cost expended before fetching any tuples */
Cost total_cost; /* 總成本;total cost (assuming all tuples fetched) */
/*
* 優(yōu)化器估算信息;planner's estimate of result size of this plan step
*/
double plan_rows; /* 行數(shù);number of rows plan is expected to emit */
int plan_width; /* 平均行大小(Byte為單位);average row width in bytes */
/*
* 并行執(zhí)行相關(guān)的信息;information needed for parallel query
*/
bool parallel_aware; /* 是否參與并行執(zhí)行邏輯?engage parallel-aware logic? */
bool parallel_safe; /* 是否并行安全;OK to use as part of parallel plan? */
/*
* Plan類型節(jié)點(diǎn)通用的信息.Common structural data for all Plan types.
*/
int plan_node_id; /* unique across entire final plan tree */
List *targetlist; /* target list to be computed at this node */
List *qual; /* implicitly-ANDed qual conditions */
struct Plan *lefttree; /* input plan tree(s) */
struct Plan *righttree;
List *initPlan; /* Init Plan nodes (un-correlated expr
* subselects) */
/*
* Information for management of parameter-change-driven rescanning
* parameter-change-driven重掃描的管理信息.
*
* extParam includes the paramIDs of all external PARAM_EXEC params
* affecting this plan node or its children. setParam params from the
* node's initPlans are not included, but their extParams are.
*
* allParam includes all the extParam paramIDs, plus the IDs of local
* params that affect the node (i.e., the setParams of its initplans).
* These are _all_ the PARAM_EXEC params that affect this node.
*/
Bitmapset *extParam;
Bitmapset *allParam;
} Plan;
JoinState
Hash/NestLoop/Merge Join的基類
/* ----------------
* JoinState information
*
* Superclass for state nodes of join plans.
* Hash/NestLoop/Merge Join的基類
* ----------------
*/
typedef struct JoinState
{
PlanState ps;//基類PlanState
JoinType jointype;//連接類型
//在找到一個(gè)匹配inner tuple的時(shí)候,如需要跳轉(zhuǎn)到下一個(gè)outer tuple,則該值為T
bool single_match; /* True if we should skip to next outer tuple
* after finding one inner match */
//連接條件表達(dá)式(除了ps.qual)
ExprState *joinqual; /* JOIN quals (in addition to ps.qual) */
} JoinState;
HashJoinState
Hash Join運(yùn)行期狀態(tài)結(jié)構(gòu)體
/* these structs are defined in executor/hashjoin.h: */
typedef struct HashJoinTupleData *HashJoinTuple;
typedef struct HashJoinTableData *HashJoinTable;
typedef struct HashJoinState
{
JoinState js; /* 基類;its first field is NodeTag */
ExprState *hashclauses;//hash連接條件
List *hj_OuterHashKeys; /* 外表?xiàng)l件鏈表;list of ExprState nodes */
List *hj_InnerHashKeys; /* 內(nèi)表連接條件;list of ExprState nodes */
List *hj_HashOperators; /* 操作符OIDs鏈表;list of operator OIDs */
HashJoinTable hj_HashTable;//Hash表
uint32 hj_CurHashValue;//當(dāng)前的Hash值
int hj_CurBucketNo;//當(dāng)前的bucket編號(hào)
int hj_CurSkewBucketNo;//行傾斜bucket編號(hào)
HashJoinTuple hj_CurTuple;//當(dāng)前元組
TupleTableSlot *hj_OuterTupleSlot;//outer relation slot
TupleTableSlot *hj_HashTupleSlot;//Hash tuple slot
TupleTableSlot *hj_NullOuterTupleSlot;//用于外連接的outer虛擬slot
TupleTableSlot *hj_NullInnerTupleSlot;//用于外連接的inner虛擬slot
TupleTableSlot *hj_FirstOuterTupleSlot;//
int hj_JoinState;//JoinState狀態(tài)
bool hj_MatchedOuter;//是否匹配
bool hj_OuterNotEmpty;//outer relation是否為空
} HashJoinState;
ExecHashJoin函數(shù)實(shí)現(xiàn)了Hash Join算法,實(shí)際實(shí)現(xiàn)的函數(shù)是ExecHashJoinImpl.
ExecHashJoinImpl函數(shù)把Hash Join劃分為多個(gè)階段/狀態(tài)(有限狀態(tài)機(jī)),保存在HashJoinState->hj_JoinState字段中,這些狀態(tài)分別是分別為HJ_BUILD_HASHTABLE/HJ_NEED_NEW_OUTER/HJ_SCAN_BUCKET/HJ_FILL_OUTER_TUPLE/HJ_FILL_INNER_TUPLES/HJ_NEED_NEW_BATCH.
HJ_BUILD_HASHTABLE:創(chuàng)建Hash表;
HJ_NEED_NEW_OUTER:掃描outer relation,計(jì)算外表連接鍵的hash值,把相匹配元組放在合適的bucket中;
HJ_SCAN_BUCKET:掃描bucket,匹配的tuple返回
HJ_FILL_OUTER_TUPLE:當(dāng)前outer relation元組已耗盡,因此檢查是否發(fā)出一個(gè)虛擬的外連接元組。
HJ_FILL_INNER_TUPLES:已完成一個(gè)批處理,但做的是右外連接/完全連接,填充虛擬連接元組
HJ_NEED_NEW_BATCH:開啟下一批次
注意:在work_mem不足以裝下Hash Table時(shí),分批執(zhí)行.每個(gè)批次執(zhí)行時(shí),會(huì)把outer relation與inner relation匹配(指hash值一樣)的tuple會(huì)存儲(chǔ)起來,放在合適的批次文件中(hashtable->outerBatchFile[batchno]),以避免多次的outer relation掃描.
#define HJ_FILL_INNER(hjstate) ((hjstate)->hj_NullOuterTupleSlot != NULL)
/* ----------------------------------------------------------------
* ExecHashJoin
*
* Parallel-oblivious version.
* Parallel-oblivious版本。
* ----------------------------------------------------------------
*/
static TupleTableSlot * /* 返回元組或者NULL;return: a tuple or NULL */
ExecHashJoin(PlanState *pstate)
{
/*
* On sufficiently smart compilers this should be inlined with the
* parallel-aware branches removed.
* 在足夠智能的編譯器上,應(yīng)該內(nèi)聯(lián)刪除并行感知分支。
*/
return ExecHashJoinImpl(pstate, false);
}
/*
* States of the ExecHashJoin state machine
*/
#define HJ_BUILD_HASHTABLE 1
#define HJ_NEED_NEW_OUTER 2
#define HJ_SCAN_BUCKET 3
#define HJ_FILL_OUTER_TUPLE 4
#define HJ_FILL_INNER_TUPLES 5
#define HJ_NEED_NEW_BATCH 6
/* Returns true if doing null-fill on outer relation */
#define HJ_FILL_OUTER(hjstate) ((hjstate)->hj_NullInnerTupleSlot != NULL)
/* Returns true if doing null-fill on inner relation */
#define HJ_FILL_INNER(hjstate) ((hjstate)->hj_NullOuterTupleSlot != NULL)
static TupleTableSlot *ExecHashJoinOuterGetTuple(PlanState *outerNode,
HashJoinState *hjstate,
uint32 *hashvalue);
static TupleTableSlot *ExecParallelHashJoinOuterGetTuple(PlanState *outerNode,
HashJoinState *hjstate,
uint32 *hashvalue);
static TupleTableSlot *ExecHashJoinGetSavedTuple(HashJoinState *hjstate,
BufFile *file,
uint32 *hashvalue,
TupleTableSlot *tupleSlot);
static bool ExecHashJoinNewBatch(HashJoinState *hjstate);
static bool ExecParallelHashJoinNewBatch(HashJoinState *hjstate);
static void ExecParallelHashJoinPartitionOuter(HashJoinState *node);
/* ----------------------------------------------------------------
* ExecHashJoinImpl
*
* This function implements the Hybrid Hashjoin algorithm. It is marked
* with an always-inline attribute so that ExecHashJoin() and
* ExecParallelHashJoin() can inline it. Compilers that respect the
* attribute should create versions specialized for parallel == true and
* parallel == false with unnecessary branches removed.
* 這個(gè)函數(shù)實(shí)現(xiàn)了混合Hash Join算法。
* 它被標(biāo)記為一個(gè)always-inline的屬性(pg_attribute_always_inline),
* 以便ExecHashJoin()和ExecParallelHashJoin()可以內(nèi)聯(lián)它。
* 可以識(shí)別該屬性的編譯器應(yīng)該創(chuàng)建專門針對(duì)parallel == true和parallel == false的版本,去掉不必要的分支。
*
* Note: the relation we build hash table on is the "inner"
* the other one is "outer".
* 注意:在inner上創(chuàng)建hash表,另外一個(gè)參與連接的成為outer
* ----------------------------------------------------------------
*/
static pg_attribute_always_inline TupleTableSlot *
ExecHashJoinImpl(PlanState *pstate, bool parallel)
{
HashJoinState *node = castNode(HashJoinState, pstate);
PlanState *outerNode;
HashState *hashNode;
ExprState *joinqual;
ExprState *otherqual;
ExprContext *econtext;
HashJoinTable hashtable;
TupleTableSlot *outerTupleSlot;
uint32 hashvalue;
int batchno;
ParallelHashJoinState *parallel_state;
/*
* get information from HashJoin node
* 從HashJon Node中獲取信息
*/
joinqual = node->js.joinqual;
otherqual = node->js.ps.qual;
hashNode = (HashState *) innerPlanState(node);
outerNode = outerPlanState(node);
hashtable = node->hj_HashTable;
econtext = node->js.ps.ps_ExprContext;
parallel_state = hashNode->parallel_state;
/*
* Reset per-tuple memory context to free any expression evaluation
* storage allocated in the previous tuple cycle.
* 重置每個(gè)元組內(nèi)存上下文以釋放在前一個(gè)元組處理周期中分配的所有表達(dá)式計(jì)算存儲(chǔ)。
*/
ResetExprContext(econtext);
/*
* run the hash join state machine
* 執(zhí)行hash join狀態(tài)機(jī)
*/
for (;;)
{
/*
* It's possible to iterate this loop many times before returning a
* tuple, in some pathological cases such as needing to move much of
* the current batch to a later batch. So let's check for interrupts
* each time through.
* 在返回元組之前,可以多次迭代此循環(huán),在某些"變態(tài)"的情況下,
* 例如需要將當(dāng)前批處理的大部分轉(zhuǎn)移到下一批處理。
* 所以需要每次檢查中斷。
*/
CHECK_FOR_INTERRUPTS();
switch (node->hj_JoinState)
{
case HJ_BUILD_HASHTABLE://-->HJ_BUILD_HASHTABLE階段
/*
* First time through: build hash table for inner relation.
* 第一次的處理邏輯:為inner relation建立hash表
*/
Assert(hashtable == NULL);
/*
* If the outer relation is completely empty, and it's not
* right/full join, we can quit without building the hash
* table. However, for an inner join it is only a win to
* check this when the outer relation's startup cost is less
* than the projected cost of building the hash table.
* Otherwise it's best to build the hash table first and see
* if the inner relation is empty. (When it's a left join, we
* should always make this check, since we aren't going to be
* able to skip the join on the strength of an empty inner
* relation anyway.)
* 如果外部關(guān)系是空的,并且它不是右外/完全連接,可以在不構(gòu)建哈希表的情況下退出。
* 但是,對(duì)于內(nèi)連接,只有當(dāng)外部關(guān)系的啟動(dòng)成本小于構(gòu)建哈希表的預(yù)期成本時(shí),才需要檢查這一點(diǎn)。
* 否則,最好先構(gòu)建哈希表,看看內(nèi)部關(guān)系是否為空。
* (當(dāng)它是左外連接時(shí),應(yīng)該始終進(jìn)行檢查,因?yàn)闊o論如何,都不能基于空的內(nèi)部關(guān)系跳過連接。)
*
* If we are rescanning the join, we make use of information
* gained on the previous scan: don't bother to try the
* prefetch if the previous scan found the outer relation
* nonempty. This is not 100% reliable since with new
* parameters the outer relation might yield different
* results, but it's a good heuristic.
* 如果需要重新掃描連接,將利用上次掃描結(jié)果中獲得的信息:
* 如果上次掃描發(fā)現(xiàn)外部關(guān)系非空,則不必嘗試預(yù)取。
* 但這不是100%可靠的,因?yàn)橛辛诵碌膮?shù),外部關(guān)系可能會(huì)產(chǎn)生不同的結(jié)果,但這是一個(gè)很好的啟發(fā)式。
*
* The only way to make the check is to try to fetch a tuple
* from the outer plan node. If we succeed, we have to stash
* it away for later consumption by ExecHashJoinOuterGetTuple.
* 進(jìn)行檢查的唯一方法是從外部plan節(jié)點(diǎn)獲取一個(gè)元組。
* 如果成功了,就必須通過ExecHashJoinOuterGetTuple將其存儲(chǔ)起來,以便以后使用。
*/
if (HJ_FILL_INNER(node))
{
/* no chance to not build the hash table */
//不構(gòu)建哈希表是不可能的了
node->hj_FirstOuterTupleSlot = NULL;
}
else if (parallel)
{
/*
* The empty-outer optimization is not implemented for
* shared hash tables, because no one participant can
* determine that there are no outer tuples, and it's not
* yet clear that it's worth the synchronization overhead
* of reaching consensus to figure that out. So we have
* to build the hash table.
* 對(duì)于共享哈希表,并沒有實(shí)現(xiàn)空外關(guān)系優(yōu)化,因?yàn)闆]有任何參與者可以確定沒有外部元組,
* 而且還不清楚是否值得為了解決這個(gè)問題而進(jìn)行同步開銷。
* 所以我們要建立哈希表。
*/
node->hj_FirstOuterTupleSlot = NULL;
}
else if (HJ_FILL_OUTER(node) ||
(outerNode->plan->startup_cost < hashNode->ps.plan->total_cost &&
!node->hj_OuterNotEmpty))
{
node->hj_FirstOuterTupleSlot = ExecProcNode(outerNode);
if (TupIsNull(node->hj_FirstOuterTupleSlot))
{
node->hj_OuterNotEmpty = false;
return NULL;
}
else
node->hj_OuterNotEmpty = true;
}
else
node->hj_FirstOuterTupleSlot = NULL;
/*
* Create the hash table. If using Parallel Hash, then
* whoever gets here first will create the hash table and any
* later arrivals will merely attach to it.
* 創(chuàng)建哈希表。
* 如果使用并行哈希,那么最先到達(dá)這里的worker將創(chuàng)建哈希表,之后到達(dá)的只會(huì)附加到它上面。
*/
hashtable = ExecHashTableCreate(hashNode,
node->hj_HashOperators,
HJ_FILL_INNER(node));
node->hj_HashTable = hashtable;
/*
* Execute the Hash node, to build the hash table. If using
* Parallel Hash, then we'll try to help hashing unless we
* arrived too late.
* 執(zhí)行哈希節(jié)點(diǎn),以構(gòu)建哈希表。
* 如果使用并行哈希,那么將嘗試協(xié)助哈希運(yùn)算,除非太晚了。
*/
hashNode->hashtable = hashtable;
(void) MultiExecProcNode((PlanState *) hashNode);
/*
* If the inner relation is completely empty, and we're not
* doing a left outer join, we can quit without scanning the
* outer relation.
* 如果內(nèi)部關(guān)系是空的,并且沒有執(zhí)行左外連接,可以在不掃描外部關(guān)系的情況下退出。
*/
if (hashtable->totalTuples == 0 && !HJ_FILL_OUTER(node))
return NULL;
/*
* need to remember whether nbatch has increased since we
* began scanning the outer relation
* 需要記住自開始掃描外部關(guān)系以來nbatch是否增加了
*/
hashtable->nbatch_outstart = hashtable->nbatch;
/*
* Reset OuterNotEmpty for scan. (It's OK if we fetched a
* tuple above, because ExecHashJoinOuterGetTuple will
* immediately set it again.)
* 掃描前重置OuterNotEmpty。
* (在其上獲取一個(gè)tuple是可以的,因?yàn)镋xecHashJoinOuterGetTuple將立即再次設(shè)置它。)
*/
node->hj_OuterNotEmpty = false;//重置OuterNotEmpty為F
if (parallel)
{
//啟用并行
Barrier *build_barrier;
build_barrier = ¶llel_state->build_barrier;
Assert(BarrierPhase(build_barrier) == PHJ_BUILD_HASHING_OUTER ||
BarrierPhase(build_barrier) == PHJ_BUILD_DONE);
if (BarrierPhase(build_barrier) == PHJ_BUILD_HASHING_OUTER)
{
/*
* If multi-batch, we need to hash the outer relation
* up front.
* 如果是多批處理,需要預(yù)先散列外部關(guān)系。
*/
if (hashtable->nbatch > 1)
ExecParallelHashJoinPartitionOuter(node);
BarrierArriveAndWait(build_barrier,
WAIT_EVENT_HASH_BUILD_HASHING_OUTER);
}
Assert(BarrierPhase(build_barrier) == PHJ_BUILD_DONE);
/* Each backend should now select a batch to work on. */
//每一個(gè)后臺(tái)worker需選擇批次
hashtable->curbatch = -1;
node->hj_JoinState = HJ_NEED_NEW_BATCH;
continue;//下一循環(huán)
}
else
//非并行執(zhí)行,設(shè)置hj_JoinState狀態(tài)
node->hj_JoinState = HJ_NEED_NEW_OUTER;
/* FALL THRU */
case HJ_NEED_NEW_OUTER://-->HJ_NEED_NEW_OUTER階段
/*
* We don't have an outer tuple, try to get the next one
* 沒有外部元組,試著獲取下一個(gè)
*/
if (parallel)
outerTupleSlot =
ExecParallelHashJoinOuterGetTuple(outerNode, node,
&hashvalue);//并行執(zhí)行
else
outerTupleSlot =
ExecHashJoinOuterGetTuple(outerNode, node, &hashvalue);//普通執(zhí)行
if (TupIsNull(outerTupleSlot))
{
//如outerTupleSlot為NULL
/* end of batch, or maybe whole join */
//完成此批數(shù)據(jù)處理,或者可能是全連接
if (HJ_FILL_INNER(node))//hj_NullOuterTupleSlot != NULL
{
/* set up to scan for unmatched inner tuples */
//不匹配的行,填充NULL(外連接)
ExecPrepHashTableForUnmatched(node);
node->hj_JoinState = HJ_FILL_INNER_TUPLES;
}
else
node->hj_JoinState = HJ_NEED_NEW_BATCH;//需要下一個(gè)批次
continue;
}
//設(shè)置變量
econtext->ecxt_outertuple = outerTupleSlot;
node->hj_MatchedOuter = false;
/*
* Find the corresponding bucket for this tuple in the main
* hash table or skew hash table.
* 在主哈希表或斜哈希表中為這個(gè)元組找到對(duì)應(yīng)的bucket。
*/
node->hj_CurHashValue = hashvalue;
//獲取Hash Bucket并處理此批次
ExecHashGetBucketAndBatch(hashtable, hashvalue,
&node->hj_CurBucketNo, &batchno);
//Hash傾斜優(yōu)化(某個(gè)值的數(shù)據(jù)特別多)
node->hj_CurSkewBucketNo = ExecHashGetSkewBucket(hashtable,
hashvalue);
node->hj_CurTuple = NULL;
/*
* The tuple might not belong to the current batch (where
* "current batch" includes the skew buckets if any).
* 元組可能不屬于當(dāng)前批處理(其中“當(dāng)前批處理”包括傾斜桶-如果有的話)。
*/
if (batchno != hashtable->curbatch &&
node->hj_CurSkewBucketNo == INVALID_SKEW_BUCKET_NO)
{
/*
* Need to postpone this outer tuple to a later batch.
* Save it in the corresponding outer-batch file.
* 需要將這個(gè)外部元組推遲到稍后的批處理。保存在相應(yīng)的外部批處理文件中。
* 也就是說,INNER和OUTER屬于此批次的數(shù)據(jù)都可能存儲(chǔ)在外存中
*/
Assert(parallel_state == NULL);
Assert(batchno > hashtable->curbatch);
ExecHashJoinSaveTuple(ExecFetchSlotMinimalTuple(outerTupleSlot),
hashvalue,
&hashtable->outerBatchFile[batchno]);
/* Loop around, staying in HJ_NEED_NEW_OUTER state */
//循環(huán),保持HJ_NEED_NEW_OUTER狀態(tài)
continue;
}
/* OK, let's scan the bucket for matches */
//已完成此階段,切換至HJ_SCAN_BUCKET狀態(tài)
node->hj_JoinState = HJ_SCAN_BUCKET;
/* FALL THRU */
case HJ_SCAN_BUCKET://-->HJ_SCAN_BUCKET階段
/*
* Scan the selected hash bucket for matches to current outer
* 掃描選定的散列桶,查找與當(dāng)前外部匹配的散列桶
*/
if (parallel)
{
//并行處理
if (!ExecParallelScanHashBucket(node, econtext))
{
/* out of matches; check for possible outer-join fill */
// 無法匹配,檢查可能的外連接填充,狀態(tài)切換為HJ_FILL_OUTER_TUPLE
node->hj_JoinState = HJ_FILL_OUTER_TUPLE;
continue;
}
}
else
{
//非并行執(zhí)行
if (!ExecScanHashBucket(node, econtext))
{
/* out of matches; check for possible outer-join fill */
node->hj_JoinState = HJ_FILL_OUTER_TUPLE;//同上
continue;
}
}
/*
* We've got a match, but still need to test non-hashed quals.
* ExecScanHashBucket already set up all the state needed to
* call ExecQual.
* 發(fā)現(xiàn)一個(gè)匹配,但仍然需要測試非散列的quals。
* ExecScanHashBucket已經(jīng)設(shè)置了調(diào)用ExecQual所需的所有狀態(tài)。
*
* If we pass the qual, then save state for next call and have
* ExecProject form the projection, store it in the tuple
* table, and return the slot.
* 如果我們傳遞了qual,那么將狀態(tài)保存為下一次調(diào)用,
* 并讓ExecProject形成投影,將其存儲(chǔ)在tuple table中,并返回slot。
*
* Only the joinquals determine tuple match status, but all
* quals must pass to actually return the tuple.
* 只有連接條件joinquals確定元組匹配狀態(tài),但所有條件quals必須通過才能返回元組。
*/
if (joinqual == NULL || ExecQual(joinqual, econtext))
{
node->hj_MatchedOuter = true;
HeapTupleHeaderSetMatch(HJTUPLE_MINTUPLE(node->hj_CurTuple));
/* In an antijoin, we never return a matched tuple */
//反連接,則不能返回匹配的元組
if (node->js.jointype == JOIN_ANTI)
{
node->hj_JoinState = HJ_NEED_NEW_OUTER;
continue;
}
/*
* If we only need to join to the first matching inner
* tuple, then consider returning this one, but after that
* continue with next outer tuple.
* 如果只需要連接到第一個(gè)匹配的內(nèi)表元組,那么可以考慮返回這個(gè)元組,
* 但是在此之后可以繼續(xù)使用下一個(gè)外表元組。
*/
if (node->js.single_match)
node->hj_JoinState = HJ_NEED_NEW_OUTER;
if (otherqual == NULL || ExecQual(otherqual, econtext))
return ExecProject(node->js.ps.ps_ProjInfo);//執(zhí)行投影操作
else
InstrCountFiltered2(node, 1);//其他條件不匹配
}
else
InstrCountFiltered1(node, 1);//連接條件不匹配
break;
case HJ_FILL_OUTER_TUPLE://-->HJ_FILL_OUTER_TUPLE階段
/*
* The current outer tuple has run out of matches, so check
* whether to emit a dummy outer-join tuple. Whether we emit
* one or not, the next state is NEED_NEW_OUTER.
* 當(dāng)前外部元組已耗盡匹配項(xiàng),因此檢查是否發(fā)出一個(gè)虛擬的外連接元組。
* 不管是否發(fā)出一個(gè),下一個(gè)狀態(tài)是NEED_NEW_OUTER。
*/
node->hj_JoinState = HJ_NEED_NEW_OUTER;//切換狀態(tài)為HJ_NEED_NEW_OUTER
if (!node->hj_MatchedOuter &&
HJ_FILL_OUTER(node))
{
/*
* Generate a fake join tuple with nulls for the inner
* tuple, and return it if it passes the non-join quals.
* 為內(nèi)部元組生成一個(gè)帶有null的假連接元組,并在滿足非連接條件quals時(shí)返回它。
*/
econtext->ecxt_innertuple = node->hj_NullInnerTupleSlot;
if (otherqual == NULL || ExecQual(otherqual, econtext))
return ExecProject(node->js.ps.ps_ProjInfo);//投影操作
else
InstrCountFiltered2(node, 1);
}
break;
case HJ_FILL_INNER_TUPLES://-->HJ_FILL_INNER_TUPLES階段
/*
* We have finished a batch, but we are doing right/full join,
* so any unmatched inner tuples in the hashtable have to be
* emitted before we continue to the next batch.
* 已經(jīng)完成了一個(gè)批處理,但是做的是右外/完全連接,
所以必須在繼續(xù)下一個(gè)批處理之前發(fā)出散列表中任何不匹配的內(nèi)部元組。
*/
if (!ExecScanHashTableForUnmatched(node, econtext))
{
/* no more unmatched tuples */
//不存在更多不匹配的元組,切換狀態(tài)為HJ_NEED_NEW_BATCH(開始下一批次)
node->hj_JoinState = HJ_NEED_NEW_BATCH;
continue;
}
/*
* Generate a fake join tuple with nulls for the outer tuple,
* and return it if it passes the non-join quals.
* 為外表元組生成一個(gè)帶有null的假連接元組,并在滿足非連接條件quals時(shí)返回它。
*/
econtext->ecxt_outertuple = node->hj_NullOuterTupleSlot;
if (otherqual == NULL || ExecQual(otherqual, econtext))
return ExecProject(node->js.ps.ps_ProjInfo);
else
InstrCountFiltered2(node, 1);
break;
case HJ_NEED_NEW_BATCH://-->HJ_NEED_NEW_BATCH階段
/*
* Try to advance to next batch. Done if there are no more.
* 盡量提前到下一批。如果沒有了,就結(jié)束。
*/
if (parallel)
{
//并行處理
if (!ExecParallelHashJoinNewBatch(node))
return NULL; /* end of parallel-aware join */
}
else
{
//非并行處理
if (!ExecHashJoinNewBatch(node))
return NULL; /* end of parallel-oblivious join */
}
node->hj_JoinState = HJ_NEED_NEW_OUTER;//切換狀態(tài)
break;
default://非法的JoinState
elog(ERROR, "unrecognized hashjoin state: %d",
(int) node->hj_JoinState);
}
}
}
測試腳本如下
testdb=# explain verbose select dw.*,grjf.grbh,grjf.xm,grjf.ny,grjf.je
testdb-# from t_dwxx dw,lateral (select gr.grbh,gr.xm,jf.ny,jf.je
testdb(# from t_grxx gr inner join t_jfxx jf
testdb(# on gr.dwbh = dw.dwbh
testdb(# and gr.grbh = jf.grbh) grjf
testdb-# order by dw.dwbh;
QUERY PLAN
-----------------------------------------------------------------------------------------------
Sort (cost=14828.83..15078.46 rows=99850 width=47)
Output: dw.dwmc, dw.dwbh, dw.dwdz, gr.grbh, gr.xm, jf.ny, jf.je
Sort Key: dw.dwbh
-> Hash Join (cost=3176.00..6537.55 rows=99850 width=47)
Output: dw.dwmc, dw.dwbh, dw.dwdz, gr.grbh, gr.xm, jf.ny, jf.je
Hash Cond: ((gr.grbh)::text = (jf.grbh)::text)
-> Hash Join (cost=289.00..2277.61 rows=99850 width=32)
Output: dw.dwmc, dw.dwbh, dw.dwdz, gr.grbh, gr.xm
Inner Unique: true
Hash Cond: ((gr.dwbh)::text = (dw.dwbh)::text)
-> Seq Scan on public.t_grxx gr (cost=0.00..1726.00 rows=100000 width=16)
Output: gr.dwbh, gr.grbh, gr.xm, gr.xb, gr.nl
-> Hash (cost=164.00..164.00 rows=10000 width=20)
Output: dw.dwmc, dw.dwbh, dw.dwdz
-> Seq Scan on public.t_dwxx dw (cost=0.00..164.00 rows=10000 width=20)
Output: dw.dwmc, dw.dwbh, dw.dwdz
-> Hash (cost=1637.00..1637.00 rows=100000 width=20)
Output: jf.ny, jf.je, jf.grbh
-> Seq Scan on public.t_jfxx jf (cost=0.00..1637.00 rows=100000 width=20)
Output: jf.ny, jf.je, jf.grbh
(20 rows)
啟動(dòng)gdb,設(shè)置斷點(diǎn),進(jìn)入ExecHashJoin
(gdb) b ExecHashJoin
Breakpoint 1 at 0x70292e: file nodeHashjoin.c, line 565.
(gdb) c
Continuing.
Breakpoint 1, ExecHashJoin (pstate=0x2ee1a88) at nodeHashjoin.c:565
565 return ExecHashJoinImpl(pstate, false);
繼續(xù)執(zhí)行,進(jìn)入第2個(gè)Hash Join,即t_grxx & t_dwxx的連接
(gdb) n
Breakpoint 1, ExecHashJoin (pstate=0x2ee1d98) at nodeHashjoin.c:565
565 return ExecHashJoinImpl(pstate, false);
查看輸入?yún)?shù),ExecProcNode=ExecProcNodeReal=ExecHashJoin
(gdb) p *pstate
$8 = {type = T_HashJoinState, plan = 0x2faaff8, state = 0x2ee1758, ExecProcNode = 0x70291d <ExecHashJoin>,
ExecProcNodeReal = 0x70291d <ExecHashJoin>, instrument = 0x0, worker_instrument = 0x0, worker_jit_instrument = 0x0,
qual = 0x0, lefttree = 0x2ee2070, righttree = 0x2ee2918, initPlan = 0x0, subPlan = 0x0, chgParam = 0x0,
ps_ResultTupleSlot = 0x2f20d98, ps_ExprContext = 0x2ee1fb0, ps_ProjInfo = 0x2ee3550, scandesc = 0x0}
(gdb)
pstate的lefttree對(duì)應(yīng)的是SeqScan,righttree對(duì)應(yīng)的是Hash,即左樹(outer relation)為t_grxx的順序掃描運(yùn)算生成的relation,右樹(inner relation)為t_dwxx的順序掃描運(yùn)算生成的relation(在此relation上創(chuàng)建Hash Table)
(gdb) p *pstate->lefttree
$6 = {type = T_SeqScanState, plan = 0x2fa8ff0, state = 0x2ee1758, ExecProcNode = 0x6e4bde <ExecProcNodeFirst>,
ExecProcNodeReal = 0x71578d <ExecSeqScan>, instrument = 0x0, worker_instrument = 0x0, worker_jit_instrument = 0x0,
qual = 0x0, lefttree = 0x0, righttree = 0x0, initPlan = 0x0, subPlan = 0x0, chgParam = 0x0,
ps_ResultTupleSlot = 0x2ee27d8, ps_ExprContext = 0x2ee2188, ps_ProjInfo = 0x0, scandesc = 0x7f0710d02bd0}
(gdb) p *pstate->righttree
$9 = {type = T_HashState, plan = 0x2faaf60, state = 0x2ee1758, ExecProcNode = 0x6e4bde <ExecProcNodeFirst>,
ExecProcNodeReal = 0x6fc015 <ExecHash>, instrument = 0x0, worker_instrument = 0x0, worker_jit_instrument = 0x0,
qual = 0x0, lefttree = 0x2ee2af0, righttree = 0x0, initPlan = 0x0, subPlan = 0x0, chgParam = 0x0,
ps_ResultTupleSlot = 0x2ee3278, ps_ExprContext = 0x2ee2a30, ps_ProjInfo = 0x0, scandesc = 0x0}
進(jìn)入ExecHashJoinImpl函數(shù)
(gdb) step
ExecHashJoinImpl (pstate=0x2ee1d98, parallel=false) at nodeHashjoin.c:167
167 HashJoinState *node = castNode(HashJoinState, pstate);
賦值,查看HashJoinState等變量值
(gdb) n
182 joinqual = node->js.joinqual;
(gdb) n
183 otherqual = node->js.ps.qual;
(gdb)
184 hashNode = (HashState *) innerPlanState(node);
(gdb)
185 outerNode = outerPlanState(node);
(gdb)
186 hashtable = node->hj_HashTable;
(gdb)
187 econtext = node->js.ps.ps_ExprContext;
(gdb)
188 parallel_state = hashNode->parallel_state;
(gdb)
194 ResetExprContext(econtext);
(gdb) p *node
$10 = {js = {ps = {type = T_HashJoinState, plan = 0x2faaff8, state = 0x2ee1758, ExecProcNode = 0x70291d <ExecHashJoin>,
ExecProcNodeReal = 0x70291d <ExecHashJoin>, instrument = 0x0, worker_instrument = 0x0, worker_jit_instrument = 0x0,
qual = 0x0, lefttree = 0x2ee2070, righttree = 0x2ee2918, initPlan = 0x0, subPlan = 0x0, chgParam = 0x0,
ps_ResultTupleSlot = 0x2f20d98, ps_ExprContext = 0x2ee1fb0, ps_ProjInfo = 0x2ee3550, scandesc = 0x0},
jointype = JOIN_INNER, single_match = true, joinqual = 0x0}, hashclauses = 0x2f21430, hj_OuterHashKeys = 0x2f22230,
hj_InnerHashKeys = 0x2f22740, hj_HashOperators = 0x2f227a0, hj_HashTable = 0x0, hj_CurHashValue = 0, hj_CurBucketNo = 0,
hj_CurSkewBucketNo = -1, hj_CurTuple = 0x0, hj_OuterTupleSlot = 0x2f212f0, hj_HashTupleSlot = 0x2ee3278,
hj_NullOuterTupleSlot = 0x0, hj_NullInnerTupleSlot = 0x0, hj_FirstOuterTupleSlot = 0x0, hj_JoinState = 1,
hj_MatchedOuter = false, hj_OuterNotEmpty = false}
(gdb) p *otherqual
Cannot access memory at address 0x0
(gdb) p *hashNode
$11 = {ps = {type = T_HashState, plan = 0x2faaf60, state = 0x2ee1758, ExecProcNode = 0x6e4bde <ExecProcNodeFirst>,
ExecProcNodeReal = 0x6fc015 <ExecHash>, instrument = 0x0, worker_instrument = 0x0, worker_jit_instrument = 0x0,
qual = 0x0, lefttree = 0x2ee2af0, righttree = 0x0, initPlan = 0x0, subPlan = 0x0, chgParam = 0x0,
ps_ResultTupleSlot = 0x2ee3278, ps_ExprContext = 0x2ee2a30, ps_ProjInfo = 0x0, scandesc = 0x0}, hashtable = 0x0,
hashkeys = 0x2f22740, shared_info = 0x0, hinstrument = 0x0, parallel_state = 0x0}
(gdb) p *hashtable
Cannot access memory at address 0x0
(gdb) p parallel_state
$12 = (ParallelHashJoinState *) 0x0
(gdb)
進(jìn)入HJ_BUILD_HASHTABLE處理邏輯,創(chuàng)建Hash表
(gdb) p node->hj_JoinState
$13 = 1
HJ_BUILD_HASHTABLE->執(zhí)行相關(guān)判斷,本例為內(nèi)連接,因此不存在FILL_OUTER等情況
(gdb) n
216 Assert(hashtable == NULL);
(gdb)
241 if (HJ_FILL_INNER(node))
(gdb)
246 else if (parallel)
(gdb)
258 else if (HJ_FILL_OUTER(node) ||
(gdb)
259 (outerNode->plan->startup_cost < hashNode->ps.plan->total_cost &&
(gdb)
HJ_BUILD_HASHTABLE->outer node的啟動(dòng)成本低于創(chuàng)建Hash表的總成本而且outer relation為空(初始化node->hj_OuterNotEmpty為false),那么嘗試獲取outer relation的第一個(gè)元組,如為NULL,則可快速返回NULL,否則設(shè)置node->hj_OuterNotEmpty標(biāo)記為T
258 else if (HJ_FILL_OUTER(node) ||
(gdb)
260 !node->hj_OuterNotEmpty))
(gdb)
259 (outerNode->plan->startup_cost < hashNode->ps.plan->total_cost &&
(gdb)
262 node->hj_FirstOuterTupleSlot = ExecProcNode(outerNode);
(gdb)
263 if (TupIsNull(node->hj_FirstOuterTupleSlot))
(gdb)
269 node->hj_OuterNotEmpty = true;
HJ_BUILD_HASHTABLE->創(chuàng)建Hash Table
(gdb) n
263 if (TupIsNull(node->hj_FirstOuterTupleSlot))
(gdb)
281 HJ_FILL_INNER(node));
(gdb)
279 hashtable = ExecHashTableCreate(hashNode,
(gdb)
HJ_BUILD_HASHTABLE->Hash Table(HashJoinTable結(jié)構(gòu)體)的內(nèi)存結(jié)構(gòu)
bucket數(shù)量為16384(16K),取對(duì)數(shù)結(jié)果為14(即log2_nbuckets/log2_nbuckets_optimal的結(jié)果值)
skewEnabled為F,沒有啟用傾斜優(yōu)化
(gdb) p *hashtable
$14 = {nbuckets = 16384, log2_nbuckets = 14, nbuckets_original = 16384, nbuckets_optimal = 16384,
log2_nbuckets_optimal = 14, buckets = {unshared = 0x2fb1260, shared = 0x2fb1260}, keepNulls = false, skewEnabled = false,
skewBucket = 0x0, skewBucketLen = 0, nSkewBuckets = 0, skewBucketNums = 0x0, nbatch = 1, curbatch = 0,
nbatch_original = 1, nbatch_outstart = 1, growEnabled = true, totalTuples = 0, partialTuples = 0, skewTuples = 0,
innerBatchFile = 0x0, outerBatchFile = 0x0, outer_hashfunctions = 0x3053b68, inner_hashfunctions = 0x3053bc0,
hashStrict = 0x3053c18, spaceUsed = 0, spaceAllowed = 16777216, spacePeak = 0, spaceUsedSkew = 0,
spaceAllowedSkew = 335544, hashCxt = 0x3053a50, batchCxt = 0x2f8b170, chunks = 0x0, current_chunk = 0x0, area = 0x0,
parallel_state = 0x0, batches = 0x0, current_chunk_shared = 9187201950435737471}
HJ_BUILD_HASHTABLE->使用的Hash函數(shù)
(gdb) p *hashtable->inner_hashfunctions
$15 = {fn_addr = 0x4c8a0a <hashtext>, fn_oid = 400, fn_nargs = 1, fn_strict = true, fn_retset = false, fn_stats = 2 '\002',
fn_extra = 0x0, fn_mcxt = 0x3053a50, fn_expr = 0x0}
(gdb) p *hashtable->outer_hashfunctions
$16 = {fn_addr = 0x4c8a0a <hashtext>, fn_oid = 400, fn_nargs = 1, fn_strict = true, fn_retset = false, fn_stats = 2 '\002',
fn_extra = 0x0, fn_mcxt = 0x3053a50, fn_expr = 0x0}
HJ_BUILD_HASHTABLE->賦值,并執(zhí)行此Hash Node節(jié)點(diǎn),結(jié)果總元組數(shù)為10000
(gdb) n
289 hashNode->hashtable = hashtable;
(gdb)
290 (void) MultiExecProcNode((PlanState *) hashNode);
(gdb)
297 if (hashtable->totalTuples == 0 && !HJ_FILL_OUTER(node))
(gdb) p hashtable->totalTuples
$18 = 10000
HJ_BUILD_HASHTABLE->批次數(shù)為1,只需要執(zhí)行1個(gè)批次即可
(gdb) n
304 hashtable->nbatch_outstart = hashtable->nbatch;
(gdb) p hashtable->nbatch
$19 = 1
HJ_BUILD_HASHTABLE->重置OuterNotEmpty為F
(gdb) n
311 node->hj_OuterNotEmpty = false;
(gdb)
313 if (parallel)
HJ_BUILD_HASHTABLE->非并行執(zhí)行,切換狀態(tài)為HJ_NEED_NEW_OUTER
(gdb)
313 if (parallel)
(gdb) n
340 node->hj_JoinState = HJ_NEED_NEW_OUTER;
HJ_NEED_NEW_OUTER->獲取(執(zhí)行ExecHashJoinOuterGetTuple)下一個(gè)outer relation的一個(gè)元組
349 if (parallel)
(gdb) n
354 outerTupleSlot =
(gdb)
357 if (TupIsNull(outerTupleSlot))
(gdb) p *outerTupleSlot
$20 = {type = T_TupleTableSlot, tts_isempty = false, tts_shouldFree = false, tts_shouldFreeMin = false, tts_slow = true,
tts_tuple = 0x2f88300, tts_tupleDescriptor = 0x7f0710d02bd0, tts_mcxt = 0x2ee1640, tts_buffer = 507, tts_nvalid = 1,
tts_values = 0x2ee22a8, tts_isnull = 0x2ee22d0, tts_mintuple = 0x0, tts_minhdr = {t_len = 0, t_self = {ip_blkid = {
bi_hi = 0, bi_lo = 0}, ip_posid = 0}, t_tableOid = 0, t_data = 0x0}, tts_off = 2, tts_fixedTupleDescriptor = true}
HJ_NEED_NEW_OUTER->設(shè)置相關(guān)變量
(gdb) n
371 econtext->ecxt_outertuple = outerTupleSlot;
(gdb)
372 node->hj_MatchedOuter = false;
(gdb)
378 node->hj_CurHashValue = hashvalue;
(gdb)
379 ExecHashGetBucketAndBatch(hashtable, hashvalue,
(gdb) p hashvalue
$21 = 2324234220
(gdb) n
381 node->hj_CurSkewBucketNo = ExecHashGetSkewBucket(hashtable,
(gdb)
383 node->hj_CurTuple = NULL;
(gdb) p *node
$22 = {js = {ps = {type = T_HashJoinState, plan = 0x2faaff8, state = 0x2ee1758, ExecProcNode = 0x70291d <ExecHashJoin>,
ExecProcNodeReal = 0x70291d <ExecHashJoin>, instrument = 0x0, worker_instrument = 0x0, worker_jit_instrument = 0x0,
qual = 0x0, lefttree = 0x2ee2070, righttree = 0x2ee2918, initPlan = 0x0, subPlan = 0x0, chgParam = 0x0,
ps_ResultTupleSlot = 0x2f20d98, ps_ExprContext = 0x2ee1fb0, ps_ProjInfo = 0x2ee3550, scandesc = 0x0},
jointype = JOIN_INNER, single_match = true, joinqual = 0x0}, hashclauses = 0x2f21430, hj_OuterHashKeys = 0x2f22230,
hj_InnerHashKeys = 0x2f22740, hj_HashOperators = 0x2f227a0, hj_HashTable = 0x2f88ee8, hj_CurHashValue = 2324234220,
hj_CurBucketNo = 16364, hj_CurSkewBucketNo = -1, hj_CurTuple = 0x0, hj_OuterTupleSlot = 0x2f212f0,
hj_HashTupleSlot = 0x2ee3278, hj_NullOuterTupleSlot = 0x0, hj_NullInnerTupleSlot = 0x0, hj_FirstOuterTupleSlot = 0x0,
hj_JoinState = 2, hj_MatchedOuter = false, hj_OuterNotEmpty = true}
(gdb) p *econtext
$25 = {type = T_ExprContext, ecxt_scantuple = 0x0, ecxt_innertuple = 0x0, ecxt_outertuple = 0x2ee2248,
ecxt_per_query_memory = 0x2ee1640, ecxt_per_tuple_memory = 0x2f710c0, ecxt_param_exec_vals = 0x0,
ecxt_param_list_info = 0x0, ecxt_aggvalues = 0x0, ecxt_aggnulls = 0x0, caseValue_datum = 0, caseValue_isNull = true,
domainValue_datum = 0, domainValue_isNull = true, ecxt_estate = 0x2ee1758, ecxt_callbacks = 0x0}
(gdb) p *node->hj_HashTupleSlot
$26 = {type = T_TupleTableSlot, tts_isempty = true, tts_shouldFree = false, tts_shouldFreeMin = false, tts_slow = false,
tts_tuple = 0x0, tts_tupleDescriptor = 0x2ee3060, tts_mcxt = 0x2ee1640, tts_buffer = 0, tts_nvalid = 0,
tts_values = 0x2ee32d8, tts_isnull = 0x2ee32f0, tts_mintuple = 0x0, tts_minhdr = {t_len = 0, t_self = {ip_blkid = {
bi_hi = 0, bi_lo = 0}, ip_posid = 0}, t_tableOid = 0, t_data = 0x0}, tts_off = 0, tts_fixedTupleDescriptor = true}
HJ_NEED_NEW_OUTER->切換狀態(tài)為HJ_SCAN_BUCKET,開始掃描Hash Table
(gdb) n
407 node->hj_JoinState = HJ_SCAN_BUCKET;
(gdb)
HJ_SCAN_BUCKET->不匹配,切換狀態(tài)為HJ_FILL_OUTER_TUPLE
(gdb)
416 if (parallel)
(gdb) n
427 if (!ExecScanHashBucket(node, econtext))
(gdb)
430 node->hj_JoinState = HJ_FILL_OUTER_TUPLE;
(gdb)
431 continue;
(gdb)
HJ_FILL_OUTER_TUPLE->切換狀態(tài)為HJ_NEED_NEW_OUTER
不管是否獲得/發(fā)出一個(gè)元組,下一個(gè)狀態(tài)是NEED_NEW_OUTER
209 switch (node->hj_JoinState)
(gdb)
483 node->hj_JoinState = HJ_NEED_NEW_OUTER;
HJ_FILL_OUTER_TUPLE->由于不是外連接,無需FILL,回到HJ_NEED_NEW_OUTER處理邏輯
(gdb) n
485 if (!node->hj_MatchedOuter &&
(gdb)
486 HJ_FILL_OUTER(node))
(gdb)
485 if (!node->hj_MatchedOuter &&
(gdb)
549 }
(gdb)
HJ_SCAN_BUCKET->在SCAN_BUCKET成功掃描的位置設(shè)置斷點(diǎn)
(gdb) b nodeHashjoin.c:441
Breakpoint 3 at 0x7025c3: file nodeHashjoin.c, line 441.
(gdb) c
Continuing.
Breakpoint 3, ExecHashJoinImpl (pstate=0x2ee1d98, parallel=false) at nodeHashjoin.c:447
447 if (joinqual == NULL || ExecQual(joinqual, econtext))
HJ_SCAN_BUCKET->存在匹配的元組,設(shè)置相關(guān)標(biāo)記
(gdb) n
449 node->hj_MatchedOuter = true;
(gdb)
450 HeapTupleHeaderSetMatch(HJTUPLE_MINTUPLE(node->hj_CurTuple));
(gdb)
453 if (node->js.jointype == JOIN_ANTI)
(gdb) n
464 if (node->js.single_match)
(gdb)
465 node->hj_JoinState = HJ_NEED_NEW_OUTER;
(gdb)
HJ_SCAN_BUCKET->執(zhí)行投影操作并返回
467 if (otherqual == NULL || ExecQual(otherqual, econtext))
(gdb)
468 return ExecProject(node->js.ps.ps_ProjInfo);
(gdb)
總的來說,Hash Join的實(shí)現(xiàn)是創(chuàng)建inner relation的Hash Table,然后獲取outer relation的元組,如匹配則執(zhí)行投影操作返回相應(yīng)的元組,除了創(chuàng)建HT外,其他步驟不斷的變換狀態(tài)執(zhí)行,直至滿足Portal要求的元組數(shù)量為止.
Hash Joins: Past, Present and Future/PGCon 2017
A Look at How Postgres Executes a Tiny Join - Part 1
A Look at How Postgres Executes a Tiny Join - Part 2
Assignment 2 Symmetric Hash Join
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請(qǐng)聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。