溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務(wù)條款》

關(guān)于TensorFlow Autodiff自動微分的案例

發(fā)布時間:2020-07-07 10:34:04 來源:億速云 閱讀:226 作者:清晨 欄目:開發(fā)技術(shù)

小編給大家分享一下關(guān)于TensorFlow Autodiff自動微分的案例,希望大家閱讀完這篇文章后大所收獲,下面讓我們一起去探討吧!

如下所示:

with tf.GradientTape(persistent=True) as tape:
 z1 = f(w1, w2 + 2.)
 z2 = f(w1, w2 + 5.)
 z3 = f(w1, w2 + 7.)
 z = [z1,z3,z3]
[tape.gradient(z, [w1, w2]) for z in (z1, z2, z3)]

輸出結(jié)果

[[<tf.Tensor: id=56906, shape=(), dtype=float32, numpy=40.0>,
 <tf.Tensor: id=56898, shape=(), dtype=float32, numpy=10.0>],
 [<tf.Tensor: id=56919, shape=(), dtype=float32, numpy=46.0>,
 <tf.Tensor: id=56911, shape=(), dtype=float32, numpy=10.0>],
 [<tf.Tensor: id=56932, shape=(), dtype=float32, numpy=50.0>,
 <tf.Tensor: id=56924, shape=(), dtype=float32, numpy=10.0>]]
with tf.GradientTape(persistent=True) as tape:
 z1 = f(w1, w2 + 2.)
 z2 = f(w1, w2 + 5.)
 z3 = f(w1, w2 + 7.)
 z = [z1,z2,z3]
tape.gradient(z, [w1, w2])

輸出結(jié)果

[<tf.Tensor: id=57075, shape=(), dtype=float32, numpy=136.0>,

<tf.Tensor: id=57076, shape=(), dtype=float32, numpy=30.0>]

如果對一個listz=[z1,z2,z3]求微分,其結(jié)果將自動求和,而不是返回z1、z2和z3各自對[w1,w2]的微分。

補充知識:Python/Numpy 矩陣運算符號@

如下所示:

A = np.matrix('3 1; 8 2')

B = np.matrix('6 1; 7 9')

A@B
matrix([[25, 12],
  [62, 26]])

看完了這篇文章,相信你對關(guān)于TensorFlow Autodiff自動微分的案例有了一定的了解,想了解更多相關(guān)知識,歡迎關(guān)注億速云行業(yè)資訊頻道,感謝各位的閱讀!

向AI問一下細節(jié)

免責聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI