您好,登錄后才能下訂單哦!
這篇文章主要介紹關(guān)于Keras數(shù)據(jù)增強(qiáng)ImageDataGenerator多輸入多輸出的案例,文中介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們一定要看完!
我就廢話不多說了,大家還是直接看代碼吧~
import os os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]="" import sys import gc import time import cv2 import random import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from tqdm import tqdm from random_eraser import get_random_eraser from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img datagen = ImageDataGenerator( rotation_range=20, #旋轉(zhuǎn) width_shift_range=0.1, #水平位置平移 # height_shift_range=0.2, #上下位置平移 shear_range=0.5, #錯(cuò)切變換,讓所有點(diǎn)的x坐標(biāo)(或者y坐標(biāo))保持不變,而對(duì)應(yīng)的y坐標(biāo)(或者x坐標(biāo))則按比例發(fā)生平移 zoom_range=[0.9,0.9], # 單方向縮放,當(dāng)一個(gè)數(shù)值時(shí)兩個(gè)方向等比例縮放,參數(shù)為list時(shí)長(zhǎng)寬不同程度縮放。參數(shù)大于0小于1時(shí),執(zhí)行的是放大操作,當(dāng)參數(shù)大于1時(shí),執(zhí)行的是縮小操作。 channel_shift_range = 40, #偏移通道數(shù)值,改變圖片顏色,越大顏色越深 horizontal_flip=True, #水平翻轉(zhuǎn),垂直翻轉(zhuǎn)vertical_flip fill_mode='nearest', #操作導(dǎo)致圖像缺失時(shí)填充方式?!癱onstant”、“nearest”(默認(rèn))、“reflect”和“wrap” preprocessing_function = get_random_eraser(p=0.7,v_l=0,v_h=255,s_l=0.01,s_h=0.03,r_1=1,r_2=1.5,pixel_level=True) ) # train_generator = datagen.flow_from_directory( # 'base/Images/', # save_to_dir = 'base/fake/', # batch_size=1 # ) # for i in range(5): # train_generator.next() # ! # df_train = pd.read_csv('base/Annotations/label.csv', header=None) # df_train.columns = ['image_id', 'class', 'label'] # classes = ['collar_design_labels', 'neckline_design_labels', 'skirt_length_labels', # 'sleeve_length_labels', 'neck_design_labels', 'coat_length_labels', 'lapel_design_labels', # 'pant_length_labels'] # ! # classes = ['collar_design_labels'] # ! # for i in range(len(classes)): # gc.enable() # # 單個(gè)分類 # cur_class = classes[i] # df_load = df_train[(df_train['class'] == cur_class)].copy() # df_load.reset_index(inplace=True) # del df_load['index'] # # print(cur_class) # # 加載數(shù)據(jù)和label # n = len(df_load) # # n_class = len(df_load['label'][0]) # # width = 256 # # X = np.zeros((n,width, width, 3), dtype=np.uint8) # # y = np.zeros((n, n_class), dtype=np.uint8) # print(f'starting load trainset {cur_class} {n}') # sys.stdout.flush() # for i in tqdm(range(n)): # # tmp_label = df_load['label'][i] # img = load_img('base/{0}'.format(df_load['image_id'][i])) # x = img_to_array(img) # x = x.reshape((1,) + x.shape) # m=0 # for batch in datagen.flow(x,batch_size=1): # # plt.imshow(array_to_img(batch[0])) # # print(batch) # array_to_img(batch[0]).save(f'base/fake/{format(df_load["image_id"][i])}-{m}.jpg') # m+=1 # if m>3: # break # gc.collect() # ! img = load_img('base/Images/collar_design_labels/2f639f11de22076ead5fe1258eae024d.jpg') plt.figure() plt.imshow(img) x = img_to_array(img) x = x.reshape((1,) + x.shape) i = 0 for batch in datagen.flow(x,batch_size=5): plt.figure() plt.imshow(array_to_img(batch[0])) # print(len(batch)) i += 1 if i >0: break
#多輸入,設(shè)置隨機(jī)種子 # Define the image transformations here gen = ImageDataGenerator(horizontal_flip = True, vertical_flip = True, width_shift_range = 0.1, height_shift_range = 0.1, zoom_range = 0.1, rotation_range = 40) # Here is the function that merges our two generators # We use the exact same generator with the same random seed for both the y and angle arrays def gen_flow_for_two_inputs(X1, X2, y): genX1 = gen.flow(X1,y, batch_size=batch_size,seed=666) genX2 = gen.flow(X1,X2, batch_size=batch_size,seed=666) while True: X1i = genX1.next() X2i = genX2.next() #Assert arrays are equal - this was for peace of mind, but slows down training #np.testing.assert_array_equal(X1i[0],X2i[0]) yield [X1i[0], X2i[1]], X1i[1]
#手動(dòng)構(gòu)造,直接輸出多l(xiāng)abel generator = ImageDataGenerator(rotation_range=5., width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True, vertical_flip=True) def generate_data_generator(generator, X, Y1, Y2): genX = generator.flow(X, seed=7) genY1 = generator.flow(Y1, seed=7) while True: Xi = genX.next() Yi1 = genY1.next() Yi2 = function(Y2) yield Xi, [Yi1, Yi2] model.fit_generator(generate_data_generator(generator, X, Y1, Y2), epochs=epochs)
def batch_generator(generator,X,Y): Xgen = generator.flow(X) while True: yield Xgen.next(),Y h = model.fit_generator(batch_generator(datagen, X_all, y_all), steps_per_epoch=len(X_all)//32+1, epochs=80,workers=3, callbacks=[EarlyStopping(patience=3), checkpointer,ReduceLROnPlateau(monitor='val_loss',factor=0.5,patience=1)], validation_data=(X_val,y_val))
補(bǔ)充知識(shí):讀取圖片成numpy數(shù)組,裁剪并保存 和 數(shù)據(jù)增強(qiáng)(ImageDataGenerator)
我就廢話不多說了,大家還是直接看代碼吧~
from PIL import Image import numpy as np from PIL import Image from keras.preprocessing import image import matplotlib.pyplot as plt import os import cv2 # from scipy.misc import toimage import matplotlib # 生成圖片地址和對(duì)應(yīng)標(biāo)簽 file_dir = '../train/' image_list = [] label_list = [] cate = [file_dir + x for x in os.listdir(file_dir) if os.path.isdir(file_dir + x)] for name in cate: temp = name.split('/') path = '../train_new/' + temp[-1] isExists = os.path.exists(path) if not isExists: os.makedirs(path) # 目錄不存在則創(chuàng)建 class_path = name + "/" for file in os.listdir(class_path): print(file) img_obj = Image.open(class_path + file) # 讀取圖片 img_array = np.array(img_obj) resized = cv2.resize(img_array, (256, 256)) # 裁剪 resized = resized.astype('float32') resized /= 255. # plt.imshow(resized) # plt.show() save_path = path + '/' + file matplotlib.image.imsave(save_path, resized) # 保存
keras之?dāng)?shù)據(jù)增強(qiáng)
from PIL import Image import numpy as np from PIL import Image from keras.preprocessing import image import os import cv2 # 生成圖片地址和對(duì)應(yīng)標(biāo)簽 file_dir = '../train/' label_list = [] cate = [file_dir + x for x in os.listdir(file_dir) if os.path.isdir(file_dir + x)] for name in cate: image_list = [] class_path = name + "/" for file in os.listdir(class_path): image_list.append(class_path + file) batch_size = 64 if len(image_list) < 10000: num = int(10000 / len(image_list)) else: num = 0 # 設(shè)置生成器參數(shù) datagen = image.ImageDataGenerator(fill_mode='wrap', # 填充模式 rotation_range=40, # 指定旋轉(zhuǎn)角度范圍 width_shift_range=0.2, # 水平位置平移 height_shift_range=0.2, # 上下位置平移 horizontal_flip=True, # 隨機(jī)對(duì)圖片執(zhí)行水平翻轉(zhuǎn)操作 vertical_flip=True, # 對(duì)圖片執(zhí)行上下翻轉(zhuǎn)操作 shear_range=0.2, rescale=1./255, # 縮放 data_format='channels_last') if num > 0: temp = name.split('/') path = '../train_datage/' + temp[-1] isExists = os.path.exists(path) if not isExists: os.makedirs(path) for image_path in image_list: i = 1 img_obj = Image.open(image_path) # 讀取圖片 img_array = np.array(img_obj) x = img_array.reshape((1,) + img_array.shape) #要求為4維 name_image = image_path.split('/') print(name_image) for batch in datagen.flow(x, batch_size=1, save_to_dir=path, save_prefix=name_image[-1][:-4] + '_', save_format='jpg'): i += 1 if i > num: break
以上是關(guān)于Keras數(shù)據(jù)增強(qiáng)ImageDataGenerator多輸入多輸出的案例的所有內(nèi)容,感謝各位的閱讀!希望分享的內(nèi)容對(duì)大家有幫助,更多相關(guān)知識(shí),歡迎關(guān)注億速云行業(yè)資訊頻道!
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。