溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶服務(wù)條款》

Pytorch中mask-rcnn的實(shí)現(xiàn)方法

發(fā)布時(shí)間:2020-06-26 00:54:17 來源:億速云 閱讀:449 作者:Leah 欄目:開發(fā)技術(shù)

本篇文章為大家展示了Pytorch中mask-rcnn的實(shí)現(xiàn)方法,代碼簡(jiǎn)明扼要并且容易理解,絕對(duì)能使你眼前一亮,通過這篇文章的詳細(xì)介紹希望你能有所收獲。

DataLoader

Dataset不能滿足需求需自定義繼承torch.utils.data.Dataset時(shí)需要override __init__, __getitem__, __len__ ,否則DataLoader導(dǎo)入自定義Dataset時(shí)缺少上述函數(shù)會(huì)導(dǎo)致NotImplementedError錯(cuò)誤

Numpy 廣播機(jī)制:

讓所有輸入數(shù)組都向其中shape最長(zhǎng)的數(shù)組看齊,shape中不足的部分都通過在前面加1補(bǔ)齊

輸出數(shù)組的shape是輸入數(shù)組shape的各個(gè)軸上的最大值

如果輸入數(shù)組的某個(gè)軸和輸出數(shù)組的對(duì)應(yīng)軸的長(zhǎng)度相同或者其長(zhǎng)度為1時(shí),這個(gè)數(shù)組能夠用來計(jì)算,否則出錯(cuò)

當(dāng)輸入數(shù)組的某個(gè)軸的長(zhǎng)度為1時(shí),沿著此軸運(yùn)算時(shí)都用此軸上的第一組值

CUDA在pytorch中的擴(kuò)展:

torch.utils.ffi中使用create_extension擴(kuò)充:

 def create_extension(name, headers, sources, verbose=True, with_cuda=False,
      package=False, relative_to='.', **kwargs):
 """Creates and configures a cffi.FFI object, that builds PyTorch extension.

 Arguments:
  name (str): package name. Can be a nested module e.g. ``.ext.my_lib``.
  headers (str or List[str]): list of headers, that contain only exported
   functions
  sources (List[str]): list of sources to compile.
  verbose (bool, optional): if set to ``False``, no output will be printed
   (default: True).
  with_cuda (bool, optional): set to ``True`` to compile with CUDA headers
   (default: False)
  package (bool, optional): set to ``True`` to build in package mode (for modules
   meant to be installed as pip packages) (default: False).
  relative_to (str, optional): path of the build file. Required when
   ``package is True``. It's best to use ``__file__`` for this argument.
  kwargs: additional arguments that are passed to ffi to declare the
   extension. See `Extension API reference`_ for details.

 .. _`Extension API reference`: https://docs.python.org/3/distutils/apiref.html#distutils.core.Extension
 """
 base_path = os.path.abspath(os.path.dirname(relative_to))
 name_suffix, target_dir = _create_module_dir(base_path, name)
 if not package:
  cffi_wrapper_name = '_' + name_suffix
 else:
  cffi_wrapper_name = (name.rpartition('.')[0] +
        '.{0}._{0}'.format(name_suffix))

 wrapper_source, include_dirs = _setup_wrapper(with_cuda)
 include_dirs.extend(kwargs.pop('include_dirs', []))

 if os.sys.platform == 'win32':
  library_dirs = glob.glob(os.getenv('CUDA_PATH', '') + '/lib/x64')
  library_dirs += glob.glob(os.getenv('NVTOOLSEXT_PATH', '') + '/lib/x64')

  here = os.path.abspath(os.path.dirname(__file__))
  lib_dir = os.path.join(here, '..', '..', 'lib')

  library_dirs.append(os.path.join(lib_dir))
 else:
  library_dirs = []
 library_dirs.extend(kwargs.pop('library_dirs', []))

 if isinstance(headers, str):
  headers = [headers]
 all_headers_source = ''
 for header in headers:
  with open(os.path.join(base_path, header), 'r') as f:
   all_headers_source += f.read() + '\n\n'

 ffi = cffi.FFI()
 sources = [os.path.join(base_path, src) for src in sources]
 # NB: TH headers are C99 now
 kwargs['extra_compile_args'] = ['-std=c99'] + kwargs.get('extra_compile_args', [])
 ffi.set_source(cffi_wrapper_name, wrapper_source + all_headers_source,
     sources=sources,
     include_dirs=include_dirs,
     library_dirs=library_dirs, **kwargs)
 ffi.cdef(_typedefs + all_headers_source)

 _make_python_wrapper(name_suffix, '_' + name_suffix, target_dir)

 def build():
  _build_extension(ffi, cffi_wrapper_name, target_dir, verbose)
 ffi.build = build
 return ffi

補(bǔ)充知識(shí):maskrcnn-benchmark 代碼詳解之 resnet.py

1Resnet 結(jié)構(gòu)

Resnet 一般分為5個(gè)卷積(conv)層,每一層為一個(gè)stage。其中每一個(gè)stage中由不同數(shù)量的相同的block(區(qū)塊)構(gòu)成,這些區(qū)塊的個(gè)數(shù)就是block_count, 第一個(gè)stage跟其他幾個(gè)stage結(jié)構(gòu)完全不同,也可以看做是由單獨(dú)的區(qū)塊構(gòu)成的,因此由區(qū)塊不停堆疊構(gòu)成的第二層到第5層(即stage2-stage5或conv2-conv5),分別定義為index1-index4.就像搭積木一樣,這四個(gè)層可有基本的區(qū)塊搭成。下圖為resnet的基本結(jié)構(gòu):

Pytorch中mask-rcnn的實(shí)現(xiàn)方法

以下代碼通過控制區(qū)塊的多少,搭建出不同的Resnet(包括Resnet50等):

# -----------------------------------------------------------------------------
# Standard ResNet models
# -----------------------------------------------------------------------------
# ResNet-50 (包括所有的階段)
# ResNet 分為5個(gè)階段,但是第一個(gè)階段都相同,變化是從第二個(gè)階段開始的,所以下面的index是從第二個(gè)階段開始編號(hào)的。其中block_count為該階段區(qū)塊的個(gè)數(shù)
ResNet50StagesTo5 = tuple(
 StageSpec(index=i, block_count=c, return_features=r)
 for (i, c, r) in ((1, 3, False), (2, 4, False), (3, 6, False), (4, 3, True))
)
# ResNet-50 up to stage 4 (excludes stage 5)
ResNet50StagesTo4 = tuple(
 StageSpec(index=i, block_count=c, return_features=r)
 for (i, c, r) in ((1, 3, False), (2, 4, False), (3, 6, True))
)
# ResNet-101 (including all stages)
ResNet101StagesTo5 = tuple(
 StageSpec(index=i, block_count=c, return_features=r)
 for (i, c, r) in ((1, 3, False), (2, 4, False), (3, 23, False), (4, 3, True))
)
# ResNet-101 up to stage 4 (excludes stage 5)
ResNet101StagesTo4 = tuple(
 StageSpec(index=i, block_count=c, return_features=r)
 for (i, c, r) in ((1, 3, False), (2, 4, False), (3, 23, True))
)
# ResNet-50-FPN (including all stages)
ResNet50FPNStagesTo5 = tuple(
 StageSpec(index=i, block_count=c, return_features=r)
 for (i, c, r) in ((1, 3, True), (2, 4, True), (3, 6, True), (4, 3, True))
)
# ResNet-101-FPN (including all stages)
ResNet101FPNStagesTo5 = tuple(
 StageSpec(index=i, block_count=c, return_features=r)
 for (i, c, r) in ((1, 3, True), (2, 4, True), (3, 23, True), (4, 3, True))
)
# ResNet-152-FPN (including all stages)
ResNet152FPNStagesTo5 = tuple(
 StageSpec(index=i, block_count=c, return_features=r)
 for (i, c, r) in ((1, 3, True), (2, 8, True), (3, 36, True), (4, 3, True))
)

根據(jù)以上的不同組合方案,maskrcnn benchmark可以搭建起不同的backbone

def _make_stage(
 transformation_module,
 in_channels,
 bottleneck_channels,
 out_channels,
 block_count,
 num_groups,
 stride_in_1x1,
 first_stride,
 dilation=1,
 dcn_config={}
):
 blocks = []
 stride = first_stride
 # 根據(jù)不同的配置,構(gòu)造不同的卷基層
 for _ in range(block_count):
  blocks.append(
   transformation_module(
    in_channels,
    bottleneck_channels,
    out_channels,
    num_groups,
    stride_in_1x1,
    stride,
    dilation=dilation,
    dcn_config=dcn_config
   )
  )
  stride = 1
  in_channels = out_channels
 return nn.Sequential(*blocks)

這幾種不同的backbone之后被集成為一個(gè)統(tǒng)一的對(duì)象以便于調(diào)用,其代碼為:

_STAGE_SPECS = Registry({
 "R-50-C4": ResNet50StagesTo4,
 "R-50-C5": ResNet50StagesTo5,
 "R-101-C4": ResNet101StagesTo4,
 "R-101-C5": ResNet101StagesTo5,
 "R-50-FPN": ResNet50FPNStagesTo5,
 "R-50-FPN-RETINANET": ResNet50FPNStagesTo5,
 "R-101-FPN": ResNet101FPNStagesTo5,
 "R-101-FPN-RETINANET": ResNet101FPNStagesTo5,
 "R-152-FPN": ResNet152FPNStagesTo5,
})

2區(qū)塊(block)結(jié)構(gòu) 

2.1 Bottleneck結(jié)構(gòu)

剛剛提到,在Resnet中,第一層卷基層可以看做一種區(qū)塊,而第二層到第五層由不同的稱之為Bottleneck的區(qū)塊堆疊二層。第一層可以看做一個(gè)stem區(qū)塊。其中Bottleneck的結(jié)構(gòu)如下:

Pytorch中mask-rcnn的實(shí)現(xiàn)方法

在maskrcnn benchmark中構(gòu)造以上結(jié)構(gòu)的代碼為:

class Bottleneck(nn.Module):
 def __init__(
  self,
  in_channels,
  bottleneck_channels,
  out_channels,
  num_groups,
  stride_in_1x1,
  stride,
  dilation,
  norm_func,
  dcn_config
 ):
  super(Bottleneck, self).__init__()
  # 區(qū)塊旁邊的旁支
  self.downsample = None
  if in_channels != out_channels:
   # 獲得卷積的步長(zhǎng) 使用一個(gè)長(zhǎng)度為1的卷積核對(duì)輸入特征進(jìn)行卷積,使得其輸出通道數(shù)等于主體部分的輸出通道數(shù)
   down_stride = stride if dilation == 1 else 1
   self.downsample = nn.Sequential(
    Conv2d(
     in_channels, out_channels,
     kernel_size=1, stride=down_stride, bias=False
    ),
    norm_func(out_channels),
   )
   for modules in [self.downsample,]:
    for l in modules.modules():
     if isinstance(l, Conv2d):
      nn.init.kaiming_uniform_(l.weight, a=1)
 
  if dilation > 1:
   stride = 1 # reset to be 1
 
  # The original MSRA ResNet models have stride in the first 1x1 conv
  # The subsequent fb.torch.resnet and Caffe2 ResNe[X]t implementations have
  # stride in the 3x3 conv
  # 步長(zhǎng)
  stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride)
  # 區(qū)塊中主體部分,這一部分為固定結(jié)構(gòu)
  # 使得特征經(jīng)過長(zhǎng)度大小為1的卷積核
  self.conv1 = Conv2d(
   in_channels,
   bottleneck_channels,
   kernel_size=1,
   stride=stride_1x1,
   bias=False,
  )
  self.bn1 = norm_func(bottleneck_channels)
  # TODO: specify init for the above
  with_dcn = dcn_config.get("stage_with_dcn", False)
  if with_dcn:
   # 使用dcn網(wǎng)絡(luò)
   deformable_groups = dcn_config.get("deformable_groups", 1)
   with_modulated_dcn = dcn_config.get("with_modulated_dcn", False)
   self.conv2 = DFConv2d(
    bottleneck_channels, 
    bottleneck_channels, 
    defrost=with_modulated_dcn,
    kernel_size=3, 
    stride=stride_3x3, 
    groups=num_groups,
    dilation=dilation,
    deformable_groups=deformable_groups,
    bias=False
   )
  else:
   # 使得特征經(jīng)過長(zhǎng)度大小為3的卷積核
   self.conv2 = Conv2d(
    bottleneck_channels,
    bottleneck_channels,
    kernel_size=3,
    stride=stride_3x3,
    padding=dilation,
    bias=False,
    groups=num_groups,
    dilation=dilation
   )
   nn.init.kaiming_uniform_(self.conv2.weight, a=1)
 
  self.bn2 = norm_func(bottleneck_channels)
 
  self.conv3 = Conv2d(
   bottleneck_channels, out_channels, kernel_size=1, bias=False
  )
  self.bn3 = norm_func(out_channels)
 
  for l in [self.conv1, self.conv3,]:
   nn.init.kaiming_uniform_(l.weight, a=1)
 
 def forward(self, x):
  identity = x
 
  out = self.conv1(x)
  out = self.bn1(out)
  out = F.relu_(out)
 
  out = self.conv2(out)
  out = self.bn2(out)
  out = F.relu_(out)
 
  out0 = self.conv3(out)
  out = self.bn3(out0)
 
  if self.downsample is not None:
   identity = self.downsample(x)
 
  out += identity
  out = F.relu_(out)
 
  return out

2.2 Stem結(jié)構(gòu)

剛剛提到Resnet的第一層可以看做是一個(gè)Stem結(jié)構(gòu),其結(jié)構(gòu)的代碼為:

class BaseStem(nn.Module):
 def __init__(self, cfg, norm_func):
  super(BaseStem, self).__init__()
  # 獲取backbone的輸出特征層的輸出通道數(shù),由用戶自定義
  out_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS
  # 輸入通道數(shù)為圖像的三原色,輸出為輸出通道數(shù),這一部分是固定的,又Resnet論文定義的
  self.conv1 = Conv2d(
   3, out_channels, kernel_size=7, stride=2, padding=3, bias=False
  )
  self.bn1 = norm_func(out_channels)
 
  for l in [self.conv1,]:
   nn.init.kaiming_uniform_(l.weight, a=1)
 
 def forward(self, x):
  x = self.conv1(x)
  x = self.bn1(x)
  x = F.relu_(x)
  x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)
  return x

2.3 兩種結(jié)構(gòu)的衍生與封裝

在maskrcnn benchmark中,對(duì)上面提到的這兩種block結(jié)構(gòu)進(jìn)行的衍生和封裝,Bottleneck和Stem分別衍生出帶有Batch Normalization 和 Group Normalizetion的封裝類,分別為:BottleneckWithFixedBatchNorm, StemWithFixedBatchNorm, BottleneckWithGN, StemWithGN. 其代碼過于簡(jiǎn)單,就不做注釋:

class BottleneckWithFixedBatchNorm(Bottleneck):
 def __init__(
  self,
  in_channels,
  bottleneck_channels,
  out_channels,
  num_groups=1,
  stride_in_1x1=True,
  stride=1,
  dilation=1,
  dcn_config={}
 ):
  super(BottleneckWithFixedBatchNorm, self).__init__(
   in_channels=in_channels,
   bottleneck_channels=bottleneck_channels,
   out_channels=out_channels,
   num_groups=num_groups,
   stride_in_1x1=stride_in_1x1,
   stride=stride,
   dilation=dilation,
   norm_func=FrozenBatchNorm2d,
   dcn_config=dcn_config
  )
 
 
class StemWithFixedBatchNorm(BaseStem):
 def __init__(self, cfg):
  super(StemWithFixedBatchNorm, self).__init__(
   cfg, norm_func=FrozenBatchNorm2d
  )
 
 
class BottleneckWithGN(Bottleneck):
 def __init__(
  self,
  in_channels,
  bottleneck_channels,
  out_channels,
  num_groups=1,
  stride_in_1x1=True,
  stride=1,
  dilation=1,
  dcn_config={}
 ):
  super(BottleneckWithGN, self).__init__(
   in_channels=in_channels,
   bottleneck_channels=bottleneck_channels,
   out_channels=out_channels,
   num_groups=num_groups,
   stride_in_1x1=stride_in_1x1,
   stride=stride,
   dilation=dilation,
   norm_func=group_norm,
   dcn_config=dcn_config
  )
 
 
class StemWithGN(BaseStem):
 def __init__(self, cfg):
  super(StemWithGN, self).__init__(cfg, norm_func=group_norm)
 
 
_TRANSFORMATION_MODULES = Registry({
 "BottleneckWithFixedBatchNorm": BottleneckWithFixedBatchNorm,
 "BottleneckWithGN": BottleneckWithGN,
})

接著,這兩種結(jié)構(gòu)關(guān)于BN和GN的四種衍生類被封裝起來,以便于調(diào)用。其封裝為:

_TRANSFORMATION_MODULES = Registry({
 "BottleneckWithFixedBatchNorm": BottleneckWithFixedBatchNorm,
 "BottleneckWithGN": BottleneckWithGN,
})
 
_STEM_MODULES = Registry({
 "StemWithFixedBatchNorm": StemWithFixedBatchNorm,
 "StemWithGN": StemWithGN,
})

3 Resnet總體結(jié)構(gòu)

3.1 Resnet結(jié)構(gòu)

在以上的基礎(chǔ)上,我們可以在以上結(jié)構(gòu)上進(jìn)一步搭建起真正的Resnet. 其中包括第一層卷基層,和其他四個(gè)階段,代碼為:

class ResNet(nn.Module):
 def __init__(self, cfg):
  super(ResNet, self).__init__()
 
  # If we want to use the cfg in forward(), then we should make a copy
  # of it and store it for later use:
  # self.cfg = cfg.clone()
 
  # Translate string names to implementations
  # 第一層conv層,也是第一階段,以stem的形式展現(xiàn)
  stem_module = _STEM_MODULES[cfg.MODEL.RESNETS.STEM_FUNC]
  # 得到指定的backbone結(jié)構(gòu)
  stage_specs = _STAGE_SPECS[cfg.MODEL.BACKBONE.CONV_BODY]
  #  得到具體bottleneck結(jié)構(gòu),也就是指出組成backbone基本模塊的類型
  transformation_module = _TRANSFORMATION_MODULES[cfg.MODEL.RESNETS.TRANS_FUNC]
 
  # Construct the stem module
  self.stem = stem_module(cfg)
 
  # Constuct the specified ResNet stages
  # 用于group normalization設(shè)置的組數(shù)
  num_groups = cfg.MODEL.RESNETS.NUM_GROUPS
  # 指定每一組擁有的通道數(shù)
  width_per_group = cfg.MODEL.RESNETS.WIDTH_PER_GROUP
  # stem是第一層的結(jié)構(gòu),它的輸出也就是第二層一下的組合結(jié)構(gòu)的輸入通道數(shù),內(nèi)部通道數(shù)是可以自由定義的
  in_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS
  # 使用group的數(shù)目和每一組的通道數(shù)來得出組成backbone基本模塊的內(nèi)部通道數(shù)
  stage2_bottleneck_channels = num_groups * width_per_group
  # 第二階段的輸出通道數(shù)
  stage2_out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS
  self.stages = []
  self.return_features = {}
  for stage_spec in stage_specs:
   name = "layer" + str(stage_spec.index)
   # 以下每一階段的輸入輸出層的通道數(shù)都可以由stage2層的得到,即2倍關(guān)系
   stage2_relative_factor = 2 ** (stage_spec.index - 1)
   bottleneck_channels = stage2_bottleneck_channels * stage2_relative_factor
   out_channels = stage2_out_channels * stage2_relative_factor
   stage_with_dcn = cfg.MODEL.RESNETS.STAGE_WITH_DCN[stage_spec.index -1]
   # 得到每一階段的卷積結(jié)構(gòu)
   module = _make_stage(
    transformation_module,
    in_channels,
    bottleneck_channels,
    out_channels,
    stage_spec.block_count,
    num_groups,
    cfg.MODEL.RESNETS.STRIDE_IN_1X1,
    first_stride=int(stage_spec.index > 1) + 1,
    dcn_config={
     "stage_with_dcn": stage_with_dcn,
     "with_modulated_dcn": cfg.MODEL.RESNETS.WITH_MODULATED_DCN,
     "deformable_groups": cfg.MODEL.RESNETS.DEFORMABLE_GROUPS,
    }
   )
   in_channels = out_channels
   self.add_module(name, module)
   self.stages.append(name)
   self.return_features[name] = stage_spec.return_features
 
  # Optionally freeze (requires_grad=False) parts of the backbone
  self._freeze_backbone(cfg.MODEL.BACKBONE.FREEZE_CONV_BODY_AT)
  
#   固定某一層的參數(shù)不再更新
 def _freeze_backbone(self, freeze_at):
  if freeze_at < 0:
   return
  for stage_index in range(freeze_at):
   if stage_index == 0:
    m = self.stem # stage 0 is the stem
   else:
    m = getattr(self, "layer" + str(stage_index))
   for p in m.parameters():
    p.requires_grad = False
 
 def forward(self, x):
  outputs = []
  x = self.stem(x)
  for stage_name in self.stages:
   x = getattr(self, stage_name)(x)
   if self.return_features[stage_name]:
    outputs.append(x)
  return outputs

3.2 Resnet head結(jié)構(gòu)

Head,在我理解看來就是完成某種功能的網(wǎng)絡(luò)結(jié)構(gòu),Resnet head就是指使用Bottleneck塊堆疊成不同的用于構(gòu)成Resnet的功能網(wǎng)絡(luò)結(jié)構(gòu),它內(nèi)部結(jié)構(gòu)相似,完成某種功能。在此不做過多介紹,因?yàn)槭巧厦娴腞esnet子結(jié)構(gòu)

class ResNetHead(nn.Module):
 def __init__(
  self,
  block_module,
  stages,
  num_groups=1,
  width_per_group=64,
  stride_in_1x1=True,
  stride_init=None,
  res2_out_channels=256,
  dilation=1,
  dcn_config={}
 ):
  super(ResNetHead, self).__init__()
 
  stage2_relative_factor = 2 ** (stages[0].index - 1)
  stage2_bottleneck_channels = num_groups * width_per_group
  out_channels = res2_out_channels * stage2_relative_factor
  in_channels = out_channels // 2
  bottleneck_channels = stage2_bottleneck_channels * stage2_relative_factor
 
  block_module = _TRANSFORMATION_MODULES[block_module]
 
  self.stages = []
  stride = stride_init
  for stage in stages:
   name = "layer" + str(stage.index)
   if not stride:
    stride = int(stage.index > 1) + 1
   module = _make_stage(
    block_module,
    in_channels,
    bottleneck_channels,
    out_channels,
    stage.block_count,
    num_groups,
    stride_in_1x1,
    first_stride=stride,
    dilation=dilation,
    dcn_config=dcn_config
   )
   stride = None
   self.add_module(name, module)
   self.stages.append(name)
  self.out_channels = out_channels
 
 def forward(self, x):
  for stage in self.stages:
   x = getattr(self, stage)(x)
  return x

上述內(nèi)容就是Pytorch中mask-rcnn的實(shí)現(xiàn)方法,你們學(xué)到知識(shí)或技能了嗎?如果還想學(xué)到更多技能或者豐富自己的知識(shí)儲(chǔ)備,歡迎關(guān)注億速云行業(yè)資訊頻道。

向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI