您好,登錄后才能下訂單哦!
怎么實(shí)現(xiàn)Python貪婪排名算法?相信很多沒有經(jīng)驗(yàn)的人對此束手無策,為此本文總結(jié)了問題出現(xiàn)的原因和解決方法,通過這篇文章希望你能解決這個問題。
通常情況下,不得不從其他CAD程序產(chǎn)生的文本或HTML文件來解析輸入,這是個是單調(diào)乏味的工作,而通過以Python字典的形式提供理想的輸入。 (有時用于解析輸入文件的代碼可以跟排名算法一樣大或著更大)。
讓我們假設(shè)每個ISG測試都有一個名稱,在確定的“時間”內(nèi)運(yùn)行,當(dāng)模擬顯示'覆蓋'設(shè)計中的 一組編號的特性時。解析之后,所收集的輸入數(shù)據(jù)由程序中的結(jié)果字典來表示。
python學(xué)習(xí)網(wǎng),大量的免費(fèi)python視頻教程,歡迎在線學(xué)習(xí)!
results = { # 'TEST': ( TIME, set([COVERED_POINT ...])), 'test_00': ( 2.08, set([2, 3, 5, 11, 12, 16, 19, 23, 25, 26, 29, 36, 38, 40])), 'test_01': ( 58.04, set([0, 10, 13, 15, 17, 19, 20, 22, 27, 30, 31, 33, 34])), 'test_02': ( 34.82, set([3, 4, 6, 12, 15, 21, 23, 25, 26, 33, 34, 40])), 'test_03': ( 32.74, set([4, 5, 10, 16, 21, 22, 26, 39])), 'test_04': (100.00, set([0, 1, 4, 6, 7, 8, 9, 11, 12, 18, 26, 27, 31, 36])), 'test_05': ( 4.46, set([1, 2, 6, 11, 14, 16, 17, 21, 22, 23, 30, 31])), 'test_06': ( 69.57, set([10, 11, 15, 17, 19, 22, 26, 27, 30, 32, 38])), 'test_07': ( 85.71, set([0, 2, 4, 5, 9, 10, 14, 17, 24, 34, 36, 39])), 'test_08': ( 5.73, set([0, 3, 8, 9, 13, 19, 23, 25, 28, 36, 38])), 'test_09': ( 15.55, set([7, 15, 17, 25, 26, 30, 31, 33, 36, 38, 39])), 'test_10': ( 12.05, set([0, 4, 13, 14, 15, 24, 31, 35, 39])), 'test_11': ( 52.23, set([0, 3, 6, 10, 11, 13, 23, 34, 40])), 'test_12': ( 26.79, set([0, 1, 4, 5, 7, 8, 10, 12, 13, 31, 32, 40])), 'test_13': ( 16.07, set([2, 6, 9, 11, 13, 15, 17, 18, 34])), 'test_14': ( 40.62, set([1, 2, 8, 15, 16, 19, 22, 26, 29, 31, 33, 34, 38])), }
貪婪排名算法的核心是對當(dāng)前選擇測試的子集進(jìn)行排序:
至少用一個測試集覆蓋盡可能大的范圍。
經(jīng)過第一個步驟,逐步減少測試集,同時覆蓋盡可能大的范圍。
給選擇的測試做出一個排序,這樣小數(shù)據(jù)集的測試也可以選擇使用
完成上述排序后,接下來就可以優(yōu)化算法的執(zhí)行時間了
當(dāng)然,他需要能在很大的測試集下工作。
貪婪排名算法的工作原理就是先選擇當(dāng)前測試集的某一項的最優(yōu)解,然后尋找下一項的最優(yōu)解,依次進(jìn)行...
如果有兩個以上的算法得出相同的執(zhí)行結(jié)果,那么將以執(zhí)行”時間“來比較兩種算法優(yōu)劣。
用下面的函數(shù)完成的算法:
def greedyranker(results): results = results.copy() ranked, coveredsofar, costsofar, round = [], set(), 0, 0 noncontributing = [] while results: round += 1 # What each test can contribute to the pool of what is covered so far contributions = [(len(cover - coveredsofar), -cost, test) for test, (cost, cover) in sorted(results.items()) ] # Greedy ranking by taking the next greatest contributor delta_cover, benefit, test = max( contributions ) if delta_cover > 0: ranked.append((test, delta_cover)) cost, cover = results.pop(test) coveredsofar.update(cover) costsofar += cost for delta_cover, benefit, test in contributions: if delta_cover == 0: # this test cannot contribute anything noncontributing.append( (test, round) ) results.pop(test) return coveredsofar, ranked, costsofar, noncontributing
每次while循環(huán)(第5行),下一個最好的測試會被追加到排名和測試,不會 丟棄貢獻(xiàn)的任何額外覆蓋(37-41行)
上面的函數(shù)是略顯簡單,所以我花了一點(diǎn)時間用tutor來標(biāo)注,當(dāng)運(yùn)行時打印出它做的。
函數(shù)(有指導(dǎo)):
它完成同樣的事情,但代碼量更大,太繁冗:
def greedyranker(results, tutor=True): results = results.copy() ranked, coveredsofar, costsofar, round = [], set(), 0, 0 noncontributing = [] while results: round += 1 # What each test can contribute to the pool of what is covered so far contributions = [(len(cover - coveredsofar), -cost, test) for test, (cost, cover) in sorted(results.items()) ] if tutor: print('\n## Round %i' % round) print(' Covered so far: %2i points: ' % len(coveredsofar)) print(' Ranked so far: ' + repr([t for t, d in ranked])) print(' What the remaining tests can contribute, largest contributors first:') print(' # DELTA, BENEFIT, TEST') deltas = sorted(contributions, reverse=True) for delta_cover, benefit, test in deltas: print(' %2i, %7.2f, %s' % (delta_cover, benefit, test)) if len(deltas)>=2 and deltas[0][0] == deltas[1][0]: print(' Note: This time around, more than one test gives the same') print(' maximum delta contribution of %i to the coverage so far' % deltas[0][0]) if deltas[0][1] != deltas[1][1]: print(' we order based on the next field of minimum cost') print(' (equivalent to maximum negative cost).') else: print(' the next field of minimum cost is the same so') print(' we arbitrarily order by test name.') zeroes = [test for delta_cover, benefit, test in deltas if delta_cover == 0] if zeroes: print(' The following test(s) cannot contribute more to coverage') print(' and will be dropped:') print(' ' + ', '.join(zeroes)) # Greedy ranking by taking the next greatest contributor delta_cover, benefit, test = max( contributions ) if delta_cover > 0: ranked.append((test, delta_cover)) cost, cover = results.pop(test) if tutor: print(' Ranking %s in round %2i giving extra coverage of: %r' % (test, round, sorted(cover - coveredsofar))) coveredsofar.update(cover) costsofar += cost for delta_cover, benefit, test in contributions: if delta_cover == 0: # this test cannot contribute anything noncontributing.append( (test, round) ) results.pop(test) if tutor: print('\n## ALL TESTS NOW RANKED OR DISCARDED\n') return coveredsofar, ranked, costsofar, noncontributing
每一塊以 if tutor開始: 添加以上代碼
樣值輸出
調(diào)用排序并打印結(jié)果的代碼是:
totalcoverage, ranking, totalcost, nonranked = greedyranker(results) print(''' A total of %i points were covered, using only %i of the initial %i tests, and should take %g time units to run. The tests in order of coverage added: TEST DELTA-COVERAGE''' % (len(totalcoverage), len(ranking), len(results), totalcost)) print('\n'.join(' %6s %i' % r for r in ranking))
結(jié)果包含大量東西,來自tutor并且最后跟著結(jié)果。
對這個偽隨機(jī)生成15條測試數(shù)據(jù)的測試案例,看起來只需要七條去產(chǎn)生最大的總覆蓋率。(而且如果你愿意放棄三條測試,其中每個只覆蓋了一個額外的點(diǎn),那么15條測試中的4條就將給出92.5%的最大可能覆蓋率)。
看完上述內(nèi)容,你們掌握怎么實(shí)現(xiàn)Python貪婪排名算法的方法了嗎?如果還想學(xué)到更多技能或想了解更多相關(guān)內(nèi)容,歡迎關(guān)注億速云行業(yè)資訊頻道,感謝各位的閱讀!
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報,并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。