溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務(wù)條款》

python中simhash包的使用方法

發(fā)布時間:2020-09-03 14:51:43 來源:億速云 閱讀:1567 作者:小新 欄目:編程語言

這篇文章將為大家詳細講解有關(guān)python中simhash包的使用方法,小編覺得挺實用的,因此分享給大家做個參考,希望大家閱讀完這篇文章后可以有所收獲。

1、simHash簡介

simHash算法是GoogleMoses Charikear于2007年發(fā)布的一篇論文《Detecting Near-duplicates for web crawling》中提出的, 專門用來解決億萬級別的網(wǎng)頁去重任務(wù)。

simHash是局部敏感哈希(locality sensitve hash)的一種,其主要思想是降維,將高維的特征向量映射成低維的特征向量,再通過比較兩個特征向量的漢明距離(Hamming Distance) 來確定文章之間的相似性。

什么是局部敏感呢?假設(shè)A,B具有一定的相似性,在hash之后,仍能保持這種相似性,就稱之為局部敏感hash

漢明距離:

Hamming Distance,又稱漢明距離,在信息論中,等長的兩個字符串之間的漢明距離就是兩個字符串對應(yīng)位置的不同字符的個數(shù)。即將一個字符串變換成另外一個字符串所需要替換的字符個數(shù),可使用異或操作。

例如: 1011與1001之間的漢明距離是1。

2、simHash具體流程

simHash算法總共分為5個流程: 分詞、has、加權(quán)、合并、降維。

分詞

對待處理文檔進行中文分詞,得到有效的特征及其權(quán)重。可以使用TF-IDF方法獲取一篇文章權(quán)重最高的前topK個詞(feature)和權(quán)重(weight)。即可使用jieba.analyse.extract_tags()來實現(xiàn)

hash

對獲取的詞(feature),進行普通的哈希操作,計算hash值,這樣就得到一個長度為n位的二進制,得到(hash:weight)的集合。

加權(quán)

在獲取的hash值的基礎(chǔ)上,根據(jù)對應(yīng)的weight值進行加權(quán),即W=hash*weight。即hash為1則和weight正相乘,為0則和weight負相乘。例如一個詞經(jīng)過hash后得到(010111:5)經(jīng)過步驟(3)之后可以得到列表[-5,5,-5,5,5,5]。

合并

將上述得到的各個向量的加權(quán)結(jié)果進行求和,變成只有一個序列串。如[-5,5,-5,5,5,5]、[-3,-3,-3,3,-3,3]、[1,-1,-1,1,1,1]進行列向累加得到[-7,1,-9,9,3,9],這樣,我們對一個文檔得到,一個長度為64的列表。

降維

對于得到的n-bit簽名的累加結(jié)果的每個值進行判斷,大于0則置為1, 否則置為0,從而得到該語句的simhash值。例如,[-7,1,-9,9,3,9]得到 010111,這樣,我們就得到一個文檔的 simhash值。

最后根據(jù)不同語句的simhash值的漢明距離來判斷相似度。

根據(jù)經(jīng)驗值,對64位的 SimHash值,海明距離在3以內(nèi)的可認為相似度比較高。

python中simhash包的使用方法

3、Python實現(xiàn)simHash

使用Python實現(xiàn)simHash算法,具體如下:

# -*- coding:utf-8 -*-
import jieba
import jieba.analyse
import numpy as np
class SimHash(object):
    def simHash(self, content):
        seg = jieba.cut(content)
        # jieba.analyse.set_stop_words('stopword.txt')
        # jieba基于TF-IDF提取關(guān)鍵詞
        keyWords = jieba.analyse.extract_tags("|".join(seg), topK=10, withWeight=True)
        keyList = []
        for feature, weight in keyWords:
            print('weight: {}'.format(weight))
            # weight = math.ceil(weight)
            weight = int(weight)
            binstr = self.string_hash(feature)
            temp=[]
            for c in binstr:
                if (c == '1'):
                    temp.append(weight)
                else:
                    temp.append(-weight)
            keyList.append(temp)
        listSum = np.sum(np.array(keyList), axis = 0)
        if (keyList == []):
            return '00'
        simhash = ''
        for i in listSum:
            if (i>0):
                simhash = simhash + '1'
            else:
                simhash = simhash + '0'
        return simhash
    def string_hash(self, source):
        if source == "":
            return 0
        else:
            x = ord(source[0]) << 7
            m = 1000003
            mask = 2**128 - 1
            for c in source:
                x = ((x*m)^ord(c)) & mask
            x ^= len(source)
            if x == -1:
                x = -2
            x = bin(x).replace('0b', '').zfill(64)[-64:]
            # print('strint_hash: %s, %s'%(source, x))
            return str(x)
    def getDistance(self, hashstr1, hashstr2):
        '''
            計算兩個simhash的漢明距離
        '''
        length = 0
        for index, char in enumerate(hashstr1):
            if char == hashstr2[index]:
                continue
            else:
                length += 1
        return length
if __name__ == '__main__':
    simhash = SimHash()
    s1 = simhash.simHash('我想洗照片')
    s2 = simhash.simHash('可以洗一張照片嗎')
    dis = simhash.getDistance(s1, s2)
    print('dis: {}'.format(dis))

對于短小的文本,計算相似度并不十分準確,更適用于較長的文本。

關(guān)于python中simhash包的使用方法就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,可以學(xué)到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。

向AI問一下細節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI