溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶服務(wù)條款》

C++如何實(shí)現(xiàn)分水嶺算法

發(fā)布時(shí)間:2021-04-14 11:18:06 來源:億速云 閱讀:241 作者:小新 欄目:編程語言

這篇文章給大家分享的是有關(guān)C++如何實(shí)現(xiàn)分水嶺算法的內(nèi)容。小編覺得挺實(shí)用的,因此分享給大家做個(gè)參考,一起跟隨小編過來看看吧。

分水嶺分割方法(Watershed Segmentation),是一種基于拓?fù)淅碚摰臄?shù)學(xué)形態(tài)學(xué)的分割方法,其基本思想是把圖像看作是測(cè)地學(xué)上的拓?fù)涞孛?,圖像中每一點(diǎn)像素的灰度值表示該點(diǎn)的海拔高度,每一個(gè)局部極小值及其影響區(qū)域稱為集水盆,而集水盆的邊界則形成分水嶺。分水嶺的概念和形成可以通過模擬浸入過程來說明。在每一個(gè)局部極小值表面,刺穿一個(gè)小孔,然后把整個(gè)模型慢慢浸入水中,隨著浸入的加深,每一個(gè)局部極小值的影響域慢慢向外擴(kuò)展,在兩個(gè)集水盆匯合處構(gòu)筑大壩,即形成分水嶺。
  分水嶺的計(jì)算過程是一個(gè)迭代標(biāo)注過程。分水嶺比較經(jīng)典的計(jì)算方法是L. Vincent提出的。在該算法中,分水嶺計(jì)算分兩個(gè)步驟,一個(gè)是排序過程,一個(gè)是淹沒過程。首先對(duì)每個(gè)像素的灰度級(jí)進(jìn)行從低到高排序,然后在從低到高實(shí)現(xiàn)淹沒過程中,對(duì)每一個(gè)局部極小值在h階高度的影響域采用先進(jìn)先出(FIFO)結(jié)構(gòu)進(jìn)行判斷及標(biāo)注。
  分水嶺變換得到的是輸入圖像的集水盆圖像,集水盆之間的邊界點(diǎn),即為分水嶺。顯然,分水嶺表示的是輸入圖像極大值點(diǎn)。因此,為得到圖像的邊緣信息,通常把梯度圖像作為輸入圖像,即:
  grad(f(x,y))=((f(x-1,y)-f(x+1,y))^2 + (f(x,y-1)-f(x,y+1))^2)^0.5
  式中,f(x,y)表示原始圖像,grad(.)表示梯度運(yùn)算。
  分水嶺算法對(duì)微弱邊緣具有良好的響應(yīng),圖像中的噪聲、物體表面細(xì)微的灰度變化,都會(huì)產(chǎn)生過度分割的現(xiàn)象。但同時(shí)應(yīng)當(dāng)看出,分水嶺算法對(duì)微弱邊緣具有良好的響應(yīng),是得到封閉連續(xù)邊緣的保證的。另外,分水嶺算法所得到的封閉的集水盆,為分析圖像的區(qū)域特征提供了可能。
  為消除分水嶺算法產(chǎn)生的過度分割,通??梢圆捎脙煞N處理方法,一是利用先驗(yàn)知識(shí)去除無關(guān)邊緣信息。二是修改梯度函數(shù)使得集水盆只響應(yīng)想要探測(cè)的目標(biāo)。
  為降低分水嶺算法產(chǎn)生的過度分割,通常要對(duì)梯度函數(shù)進(jìn)行修改,一個(gè)簡(jiǎn)單的方法是對(duì)梯度圖像進(jìn)行閾值處理,以消除灰度的微小變化產(chǎn)生的過度分割。即:
  g(x,y)=max(grad(f(x,y)),gθ)
  式中,gθ表示閾值。
  程序可采用方法:用閾值限制梯度圖像以達(dá)到消除灰度值的微小變化產(chǎn)生的過度分割,獲得適量的區(qū)域,再對(duì)這些區(qū)域的邊緣點(diǎn)的灰度級(jí)進(jìn)行從低到高排序,然后在從低到高實(shí)現(xiàn)淹沒的過程,梯度圖像用Sobel算子計(jì)算獲得。對(duì)梯度圖像進(jìn)行閾值處理時(shí),選取合適的閾值對(duì)最終分割的圖像有很大影響,因此閾值的選取是圖像分割效果好壞的一個(gè)關(guān)鍵。缺點(diǎn):實(shí)際圖像中可能含有微弱的邊緣,灰度變化的數(shù)值差別不是特別明顯,選取閾值過大可能會(huì)消去這些微弱邊緣。

  下面用C++實(shí)現(xiàn)分水嶺算法:

#define _USE_MATH_DEFINES 
 
#include <cstddef> 
#include <cstdlib> 
#include <cstring> 
#include <climits> 
#include <cfloat> 
#include <ctime> 
#include <cmath> 
#include <cassert> 
#include <vector> 
#include <stack> 
#include <queue> 
 
using namespace std; 
 
 
 
typedef void              GVVoid; 
typedef bool              GVBoolean; 
typedef char              GVChar; 
typedef unsigned char          GVByte; 
typedef short              GVInt16; 
typedef unsigned short         GVUInt16; 
typedef int               GVInt32; 
typedef unsigned int          GVUInt32; 
typedef long long            GVInt64; 
typedef unsigned long long       GVUInt64; 
typedef float              GVFloat32; 
typedef double             GVFloat64; 
 
const GVBoolean GV_TRUE         = true; 
const GVBoolean GV_FALSE        = false; 
const GVByte              GV_BYTE_MAX = UCHAR_MAX; 
const GVInt32              GV_INT32_MAX = INT_MAX; 
const GVInt32              GV_INT32_MIX = INT_MIN; 
const GVInt64              GV_INT64_MAX = LLONG_MAX; 
const GVInt64              GV_INT64_MIN = LLONG_MIN; 
const GVFloat32 GV_FLOAT32_MAX     = FLT_MAX; 
const GVFloat32 GV_FLOAT32_MIN     = FLT_MIN; 
const GVFloat64 GV_FLOAT64_MAX     = DBL_MAX; 
const GVFloat64 GV_FLOAT64_MIN     = DBL_MIN; 
 
class                  GVPoint; 
 
 
 
class GVPoint { 
 
public: 
  GVInt32       x; 
  GVInt32       y; 
 
public: 
  GVPoint() : x(0), y(0) { } 
  GVPoint(const GVPoint &obj) : x(obj.x), y(obj.y) { } 
  GVPoint(GVInt32 x, GVInt32 y) : x(x), y(y) { } 
 
public: 
  GVBoolean operator ==(const GVPoint &right) const { 
    return ((x == right.x) && (y == right.y)); 
  } 
  GVBoolean operator !=(const GVPoint &right) const { 
    return (!(x == right.x) || !(y == right.y)); 
  } 
}; 
 
 
 
/* 
 * <Parameter> 
 *   <image> image data; 
 *   <width> image width; 
 *   <height> image height; 
 *   <label out> image of labeled watersheds. 
 */ 
GVVoid gvWatershed( 
    const GVByte *image, 
    GVInt32 width, 
    GVInt32 height, 
    GVInt32 *label) 
{ 
 
  // Local constants 
  const GVInt32 WSHD = 0; 
  const GVInt32 INIT = -1; 
  const GVInt32 MASK = -2; 
  const GVPoint FICT_PIXEL = GVPoint(~0, ~0); 
 
  // Image statistics and sorting 
  GVInt32 size = width * height; 
  GVInt32 *image_stat = new GVInt32[GV_BYTE_MAX + 1]; 
  GVInt32 *image_space = new GVInt32[GV_BYTE_MAX + 1]; 
  GVPoint *image_sort = new GVPoint[size]; 
  ::memset(image_stat, 0, sizeof (GVInt32) * (GV_BYTE_MAX + 1)); 
  ::memset(image_space, 0, sizeof (GVInt32) * (GV_BYTE_MAX + 1)); 
  ::memset(image_sort, 0, sizeof (GVPoint) * size); 
  for (GVInt32 i = 0; !(i == size); ++i) { 
    image_stat[image[i]]++; 
  } 
  for (GVInt32 i = 0; !(i == GV_BYTE_MAX); ++i) { 
    image_stat[i + 1] += image_stat[i]; 
  } 
  for (GVInt32 i = 0; !(i == height); ++i) { 
    for (GVInt32 j = 0; !(j == width); ++j) { 
      GVByte space = image[i * width + j]; 
      GVInt32 index = image_stat[space] - (++image_space[space]); 
      image_sort[index].x = j; 
      image_sort[index].y = i; 
    } 
  } 
  for (GVInt32 i = GV_BYTE_MAX; !(i == 0); --i) { 
    image_stat[i] -= image_stat[i - 1]; 
  } 
 
  // Watershed algorithm 
  GVPoint *head = image_sort; 
  GVInt32 space = 0; 
  GVInt32 *dist = new GVInt32[size]; 
  GVInt32 dist_cnt = 0; 
  GVInt32 label_cnt = 0; 
  std::queue<GVPoint> queue; 
  ::memset(dist, 0, sizeof (GVInt32) * size); 
  ::memset(label, ~0, sizeof (GVInt32) * size); 
  for (GVInt32 h = 0; !(h == (GV_BYTE_MAX + 1)); ++h) { 
    head += space; 
    space = image_stat[h]; 
    for (GVInt32 i = 0; !(i == space); ++i) { 
      GVInt32 index = head[i].y * width + head[i].x; 
      GVInt32 index_l = ((head[i].x - 1) < 0) ? -1 : ((head[i].x - 1) + head[i].y * width); 
      GVInt32 index_r = !((head[i].x + 1) > width) ? -1 : ((head[i].x + 1) + head[i].y * width); 
      GVInt32 index_t = ((head[i].y - 1) < 0) ? -1 : (head[i].x + (head[i].y - 1) * width); 
      GVInt32 index_b = !((head[i].y + 1) > height) ? -1 : (head[i].x + (head[i].y + 1) * width); 
      label[index] = MASK; 
      if (    (!(index_l < 0) && !(label[index_l] < WSHD)) 
          || (!(index_r < 0) && !(label[index_r] < WSHD)) 
          || (!(index_t < 0) && !(label[index_t] < WSHD)) 
          || (!(index_b < 0) && !(label[index_b] < WSHD))) { 
        dist[index] = 1; 
        queue.push(head[i]); 
      } 
    } 
    dist_cnt = 1; 
    queue.push(FICT_PIXEL); 
    while (GV_TRUE) { 
      GVPoint top = queue.front(); 
      GVInt32 index = top.y * width + top.x; 
      GVInt32 index_l = ((top.x - 1) < 0) ? -1 : ((top.x - 1) + top.y * width); 
      GVInt32 index_r = !((top.x + 1) > width) ? -1 : ((top.x + 1) + top.y * width); 
      GVInt32 index_t = ((top.y - 1) < 0) ? -1 : (top.x + (top.y - 1) * width); 
      GVInt32 index_b = !((top.y + 1) > height) ? -1 : (top.x + (top.y + 1) * width); 
      queue.pop(); 
      if (top == FICT_PIXEL) { 
        if (queue.empty()) break; 
        else { 
          ++dist_cnt; 
          queue.push(FICT_PIXEL); 
          top = queue.front(); 
          queue.pop(); 
        } 
      } 
      if (!(index_l < 0)) { 
        if ((dist[index_l] < dist_cnt) && !(label[index_l] < WSHD)) { 
          if (label[index_l] > WSHD) { 
            if ((label[index] == MASK) || (label[index] = WSHD)) label[index] = label[index_l]; 
            else if (!(label[index] == label[index_l])) label[index] = WSHD; 
          } else if (label[index] == MASK) { 
            label[index] = WSHD; 
          } 
        } else if ((label[index_l] == MASK) && (dist[index_l] == 0)) { 
          dist[index_l] = dist_cnt + 1; 
          queue.push(GVPoint(top.x - 1, top.y)); 
        } 
      } 
      if (!(index_r < 0)) { 
        if ((dist[index_r] < dist_cnt) && !(label[index_r] < WSHD)) { 
          if (label[index_r] > WSHD) { 
            if ((label[index] == MASK) || (label[index] = WSHD)) label[index] = label[index_r]; 
            else if (!(label[index] == label[index_r])) label[index] = WSHD; 
          } else if (label[index] == MASK) { 
            label[index] = WSHD; 
          } 
        } else if ((label[index_r] == MASK) && (dist[index_r] == 0)) { 
          dist[index_r] = dist_cnt + 1; 
          queue.push(GVPoint(top.x + 1, top.y)); 
        } 
      } 
      if (!(index_t < 0)) { 
        if ((dist[index_t] < dist_cnt) && !(label[index_t] < WSHD)) { 
          if (label[index_t] > WSHD) { 
            if ((label[index] == MASK) || (label[index] = WSHD)) label[index] = label[index_t]; 
            else if (!(label[index] == label[index_t])) label[index] = WSHD; 
          } else if (label[index] == MASK) { 
            label[index] = WSHD; 
          } 
        } else if ((label[index_t] == MASK) && (dist[index_t] == 0)) { 
          dist[index_t] = dist_cnt + 1; 
          queue.push(GVPoint(top.x, top.y - 1)); 
        } 
      } 
      if (!(index_b < 0)) { 
        if ((dist[index_b] < dist_cnt) && !(label[index_b] < WSHD)) { 
          if (label[index_b] > WSHD) { 
            if ((label[index] == MASK) || (label[index] = WSHD)) label[index] = label[index_b]; 
            else if (!(label[index] == label[index_b])) label[index] = WSHD; 
          } else if (label[index] == MASK) { 
            label[index] = WSHD; 
          } 
        } else if ((label[index_b] == MASK) && (dist[index_b] == 0)) { 
          dist[index_b] = dist_cnt + 1; 
          queue.push(GVPoint(top.x, top.y + 1)); 
        } 
      } 
    } 
    for (GVInt32 i = 0; !(i == space); ++i) { 
      GVInt32 index = head[i].y * width + head[i].x; 
      dist[index] = 0; 
      if (label[index] == MASK) { 
        label_cnt++; 
        label[index] = label_cnt; 
        queue.push(head[i]); 
        while (!queue.empty()) { 
          GVPoint top = queue.front(); 
          GVInt32 index_l = ((top.x - 1) < 0) ? -1 : ((top.x - 1) + top.y * width); 
          GVInt32 index_r = !((top.x + 1) > width) ? -1 : ((top.x + 1) + top.y * width); 
          GVInt32 index_t = ((top.y - 1) < 0) ? -1 : (top.x + (top.y - 1) * width); 
          GVInt32 index_b = !((top.y + 1) > height) ? -1 : (top.x + (top.y + 1) * width); 
          queue.pop(); 
          if (!(index_l < 0) && (label[index_l] == MASK)) { 
            queue.push(GVPoint(top.x - 1, top.y)); 
            label[index_l] = label_cnt; 
          } 
          if (!(index_r < 0) && (label[index_r] == MASK)) { 
            queue.push(GVPoint(top.x + 1, top.y)); 
            label[index_r] = label_cnt; 
          } 
          if (!(index_t < 0) && (label[index_t] == MASK)) { 
            queue.push(GVPoint(top.x, top.y - 1)); 
            label[index_t] = label_cnt; 
          } 
          if (!(index_b < 0) && (label[index_b] == MASK)) { 
            queue.push(GVPoint(top.x, top.y + 1)); 
            label[index_b] = label_cnt; 
          } 
        } 
      } 
    } 
  } 
 
  // Release resources 
  delete[] image_stat; 
  delete[] image_space; 
  delete[] image_sort; 
  delete[] dist; 
}

感謝各位的閱讀!關(guān)于“C++如何實(shí)現(xiàn)分水嶺算法”這篇文章就分享到這里了,希望以上內(nèi)容可以對(duì)大家有一定的幫助,讓大家可以學(xué)到更多知識(shí),如果覺得文章不錯(cuò),可以把它分享出去讓更多的人看到吧!

向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI