溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務(wù)條款》

C++基于特征向量的KNN分類算法怎么用

發(fā)布時間:2021-08-25 15:01:13 來源:億速云 閱讀:215 作者:小新 欄目:編程語言

這篇文章給大家分享的是有關(guān)C++基于特征向量的KNN分類算法怎么用的內(nèi)容。小編覺得挺實用的,因此分享給大家做個參考,一起跟隨小編過來看看吧。

K最近鄰(k-Nearest Neighbor,KNN)分類算法,是一個理論上比較成熟的方法,也是最簡單的機器學(xué)習(xí)算法之一。該方法的思路是:如果一個樣本在特征空間中的k個最相似(即特征空間中最鄰近)的樣本中的大多數(shù)屬于某一個類別,則該樣本也屬于這個類別。KNN算法中,所選擇的鄰居都是已經(jīng)正確分類的對象。該方法在定類決策上只依據(jù)最鄰近的一個或者幾個樣本的類別來決定待分樣本所屬的類別。 KNN方法雖然從原理上也依賴于極限定理,但在類別決策時,只與極少量的相鄰樣本有關(guān)。由于KNN方法主要靠周圍有限的鄰近的樣本,而不是靠判別類域的方法來確定所屬類別的,因此對于類域的交叉或重疊較多的待分樣本集來說,KNN方法較其他方法更為適合。

#include "stdafx.h"
#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
#include <vector>
#include <set>
#include <map>
#include <cmath>
 
using namespace std;
 
//樣本特征結(jié)構(gòu)體
struct sample
{
 string type;
 vector<double> features;
};
 
//讀取訓(xùn)練樣本train.txt,訓(xùn)練樣本格式:類型名+特征向量
void readTrain(vector<sample>& train, const string& file)
{
 ifstream fin(file.c_str()); //file是存儲希望讀寫的文件名的string對象,fin是讀的流
 if(!fin)
 {
 cerr<<"Unable to open the input file: "<<file<<endl;
 exit(1);
 }
 
 string line; 
 double d=0.0;
 while(getline(fin,line)) //fin是讀入流,getline從輸入流fin讀入一行到line
 {
 istringstream stream(line); //bind to stream to the line we read
 sample ts;
 stream>>ts.type;
 while(stream>>d) //read a word from line
 {
  ts.features.push_back(d); //在trains.features的末尾添加一個值為d的元素
 }
 train.push_back(ts); //在train的末尾添加一個值為ts的元素
 }
 fin.close();
}
 
//讀取測試樣本test.txt,每行都是一個特征向量
void readTest(vector<sample>& test, const string& file)
{
 ifstream fin(file.c_str());
 if(!fin)
 {
 cerr<<"Unable to open the input file: "<<file<<endl;
 exit(1);
 }
 
 string line;
 double d=0.0;
 while(getline(fin,line))
 {
 istringstream stream(line); //bind to stream to the line we read
 sample ts;
 while(stream>>d)
 {
  ts.features.push_back(d);
 }
 test.push_back(ts);
 }
 fin.close();
}
 
//輸出結(jié)果,為每一個向量賦予一個類型,寫入result.txt中
void writeResult(const vector<sample>& test, const string& file)
{
 ofstream fout(file.c_str());
 if(!fout)
 {
 cerr<<"Unable to write the input file: "<<endl;
 exit(1);
 }
 
 for(vector<sample>::size_type i=0;i!=test.size();++i)
 {
 fout << test[i].type << '\t';
 for(vector<double>::size_type j=0;j!=test[j].features.size();++j)
 {
  fout<<test[i].features[j]<<' ';
 }
 fout<<endl;
 }
}
 
//KNN算法的實現(xiàn)
void knnProcess(vector<sample>& test, const vector<sample>& train, const vector<vector<double> >& dm, unsigned int k)
{
 for (vector<sample>::size_type i = 0; i != test.size(); ++i)
 {
 multimap<double, string> dts; //保存與測試樣本i距離最近的k個點
 
 for (vector<double>::size_type j = 0; j != dm[i].size(); ++j)
 {
  if (dts.size() < k) //把前面k個插入dts中
  {
  dts.insert(make_pair(dm[i][j], train[j].type)); //插入時會自動排序,按dts中的double排序,最小的排在最后
  }
  else
  {
  multimap<double, string>::iterator it = dts.end();
  --it;
 
  if (dm[i][j] < it->first) //把當(dāng)前測試樣本i到當(dāng)前訓(xùn)練樣本之間的歐氏距離與dts中最小距離比較,若更小就更新dts
  {
   dts.erase(it);
   dts.insert(make_pair(dm[i][j], train[j].type));
  }
  }
 }
 map<string, double> tds;
 string type = "";
 double weight = 0.0;
 //下面for循環(huán)主要是求出與測試樣本i最鄰近的k個樣本點中大多數(shù)屬于的類別,即將其作為測試樣本點i的類別
 for (multimap<double, string>::const_iterator cit = dts.begin(); cit != dts.end(); ++cit)
 {
  // 不考慮權(quán)重的情況,在 k 個樣例中只要出現(xiàn)就加 1
  // ++tds[cit->second];
 
  // 這里是考慮距離與權(quán)重的關(guān)系,距離越大權(quán)重越小
  tds[cit->second] += 1.0 / cit->first;
  if (tds[cit->second] > weight)
  {
  weight = tds[cit->second];
  type = cit->second; //保存一下類別
  }
 }
 test[i].type = type;
 }
}
 
// 計算歐氏距離
double euclideanDistance(const vector<double>& v1, const vector<double>& v2)
{
 if(v1.size() != v2.size())
 {
 cerr<<"Unable to get a distance! "<<endl;
 }
 
 else
 {
 double distance = 0.0;
 
 for (vector<double>::size_type i = 0; i != v1.size(); ++i)
 {
  distance += (v1[i] - v2[i]) * (v1[i] - v2[i]);
 }
 return sqrt(distance);
 }
}
 
/*初始化距離矩陣,該矩陣是根據(jù)訓(xùn)練樣本和測試樣本而得,
矩陣的行數(shù)為測試樣本的數(shù)目,列數(shù)為訓(xùn)練樣本的數(shù)目,
每一行為一個測試樣本到各個訓(xùn)練樣本之間的歐式距離組成的數(shù)組*/
void initDistanceMatrix(vector<vector<double> >& dm, const vector<sample>& train, const vector<sample>& test)
{
 for (vector<sample>::size_type i = 0; i != test.size(); ++i)
 {
 vector<double> vd;
 for (vector<sample>::size_type j = 0; j != train.size(); ++j)
 {
  vd.push_back(euclideanDistance(test[i].features, train[j].features));
 }
 dm.push_back(vd);
 }
}
 
//封裝
void xfxKnn(const string& file1, const string& file2, const string& file3, int k)
{
 vector<sample> train,test;
 readTrain(train, file1.c_str());
 readTest(test, file2.c_str());
 vector< vector<double> > dm;
 initDistanceMatrix(dm, train, test);
 knnProcess(test, train, dm, k);
 writeResult(test, file3.c_str());
}
 
// 測試
int main()
{
 xfxKnn("train.txt", "test.txt", "result.txt", 5);
 return 0;
}

感謝各位的閱讀!關(guān)于“C++基于特征向量的KNN分類算法怎么用”這篇文章就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,讓大家可以學(xué)到更多知識,如果覺得文章不錯,可以把它分享出去讓更多的人看到吧!

向AI問一下細節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI