溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點(diǎn)擊 登錄注冊 即表示同意《億速云用戶服務(wù)條款》

C#如何實(shí)現(xiàn)斐波那契數(shù)列

發(fā)布時間:2021-05-17 10:28:12 來源:億速云 閱讀:411 作者:小新 欄目:編程語言

這篇文章主要介紹了C#如何實(shí)現(xiàn)斐波那契數(shù)列,具有一定借鑒價值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。

什么是斐波那契數(shù)列?經(jīng)典數(shù)學(xué)問題之一;斐波那契數(shù)列,又稱黃金分割數(shù)列,指的是這樣一個數(shù)列:1、1、2、3、5、8、13、21、……想必看到這個數(shù)列大家很容易的就推算出來后面好幾項(xiàng)的值,那么到底有什么規(guī)律,簡單說,就是前兩項(xiàng)的和是第三項(xiàng)的值,用遞歸算法計第50位多少。

這個數(shù)列從第3項(xiàng)開始,每一項(xiàng)都等于前兩項(xiàng)之和。

斐波那契數(shù)列:{1,1,2,3,5,8,13,21...}

遞歸算法,耗時最長的算法,效率很低。

public static long CalcA(int n)
{
  if (n <= 0) return 0;
  if (n <= 2) return 1;
  return checked(CalcA(n - 2) + CalcA(n - 1));
}

通過循環(huán)來實(shí)現(xiàn)

public static long CalcB(int n)
{
  if (n <= 0) return 0;
  var a = 1L;
  var b = 1L;
  var result = 1L;
  for (var i = 3; i <= n; i++)
  {
    result = checked(a + b);
    a = b;
    b = result;
  }
  return result;
}

通過循環(huán)的改進(jìn)寫法

public static long CalcC(int n)
{
  if (n <= 0) return 0;
  var a = 1L;
  var b = 1L;
  for (var i = 3; i <= n; i++)
  {
    b = checked(a + b);
    a = b - a;
  }
  return b;
}

通用公式法

/// <summary>
/// F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
public static long CalcD(int n)
{
  if (n <= 0) return 0;
  if (n <= 2) return 1; //加上,可減少運(yùn)算。
  var a = 1 / Math.Sqrt(5);
  var b = Math.Pow((1 + Math.Sqrt(5)) / 2, n);
  var c = Math.Pow((1 - Math.Sqrt(5)) / 2, n);
  return checked((long)(a * (b - c)));
}

其他方法

using System;
using System.Diagnostics;


namespace Fibonacci
{
  class Program
  {
    static void Main(string[] args)
    {
      ulong result;

      int number = 10;
      Console.WriteLine("************* number={0} *************", number);

      Stopwatch watch2 = new Stopwatch();
      watch2.Start();
      result = F1(number);
      watch2.Stop();
      Console.WriteLine("F1({0})=" + result + " 耗時:" + watch2.Elapsed, number);

      Stopwatch watch3 = new Stopwatch();
      watch3.Start();
      result = F2(number);
      watch3.Stop();
      Console.WriteLine("F2({0})=" + result + " 耗時:" + watch3.Elapsed, number);

      Stopwatch watch4 = new Stopwatch();
      watch4.Start();
      result = F3(number);
      watch4.Stop();
      Console.WriteLine("F3({0})=" + result + " 耗時:" + watch4.Elapsed, number);

      Stopwatch watch5 = new Stopwatch();
      watch5.Start();
      double result4 = F4(number);
      watch5.Stop();
      Console.WriteLine("F4({0})=" + result4 + " 耗時:" + watch5.Elapsed, number);

      Console.WriteLine();

      Console.WriteLine("結(jié)束");
      Console.ReadKey();
    }

    /// <summary>
    /// 迭代法
    /// </summary>
    /// <param name="number"></param>
    /// <returns></returns>
    private static ulong F1(int number)
    {
      if (number == 1 || number == 2)
      {
        return 1;
      }
      else
      {
        return F1(number - 1) + F1(number - 2);
      }
      
    }

    /// <summary>
    /// 直接法
    /// </summary>
    /// <param name="number"></param>
    /// <returns></returns>
    private static ulong F2(int number)
    {
      ulong a = 1, b = 1;
      if (number == 1 || number == 2)
      {
        return 1;
      }
      else
      {
        for (int i = 3; i <= number; i++)
        {
          ulong c = a + b;
          b = a;
          a = c;
        }
        return a;
      }
    }

    /// <summary>
    /// 矩陣法
    /// </summary>
    /// <param name="n"></param>
    /// <returns></returns>
    static ulong F3(int n)
    {
      ulong[,] a = new ulong[2, 2] { { 1, 1 }, { 1, 0 } };
      ulong[,] b = MatirxPower(a, n);
      return b[1, 0];
    }

    #region F3
    static ulong[,] MatirxPower(ulong[,] a, int n)
    {
      if (n == 1) { return a; }
      else if (n == 2) { return MatirxMultiplication(a, a); }
      else if (n % 2 == 0)
      {
        ulong[,] temp = MatirxPower(a, n / 2);
        return MatirxMultiplication(temp, temp);
      }
      else
      {
        ulong[,] temp = MatirxPower(a, n / 2);
        return MatirxMultiplication(MatirxMultiplication(temp, temp), a);
      }
    }

    static ulong[,] MatirxMultiplication(ulong[,] a, ulong[,] b)
    {
      ulong[,] c = new ulong[2, 2];
      for (int i = 0; i < 2; i++)
      {
        for (int j = 0; j < 2; j++)
        {
          for (int k = 0; k < 2; k++)
          {
            c[i, j] += a[i, k] * b[k, j];
          }
        }
      }
      return c;
    }
    #endregion

    /// <summary>
    /// 通項(xiàng)公式法
    /// </summary>
    /// <param name="n"></param>
    /// <returns></returns>
    static double F4(int n)
    {
      double sqrt5 = Math.Sqrt(5);
      return (1/sqrt5*(Math.Pow((1+sqrt5)/2,n)-Math.Pow((1-sqrt5)/2,n)));
    }
  }
}

OK,就這些了。用的long類型來存儲結(jié)果,當(dāng)n>92時會內(nèi)存溢出。

C#是什么

C#是一個簡單、通用、面向?qū)ο蟮木幊陶Z言,它由微軟Microsoft開發(fā),繼承了C和C++強(qiáng)大功能,并且去掉了一些它們的復(fù)雜特性,C#綜合了VB簡單的可視化操作和C++的高運(yùn)行效率,以其強(qiáng)大的操作能力、優(yōu)雅的語法風(fēng)格、創(chuàng)新的語言特性和便捷的面向組件編程從而成為.NET開發(fā)的首選語言,但它不適用于編寫時間急迫或性能非常高的代碼,因?yàn)镃#缺乏性能極高的應(yīng)用程序所需要的關(guān)鍵功能。

感謝你能夠認(rèn)真閱讀完這篇文章,希望小編分享的“C#如何實(shí)現(xiàn)斐波那契數(shù)列”這篇文章對大家有幫助,同時也希望大家多多支持億速云,關(guān)注億速云行業(yè)資訊頻道,更多相關(guān)知識等著你來學(xué)習(xí)!

向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報,并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI