您好,登錄后才能下訂單哦!
本文完全利用numpy實現(xiàn)一個簡單的BP神經(jīng)網(wǎng)絡(luò),由于是做regression而不是classification,因此在這里輸出層選取的激勵函數(shù)就是f(x)=x。BP神經(jīng)網(wǎng)絡(luò)的具體原理此處不再介紹。
import numpy as np class NeuralNetwork(object): def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Set number of nodes in input, hidden and output layers.設(shè)定輸入層、隱藏層和輸出層的node數(shù)目 self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # Initialize weights,初始化權(quán)重和學(xué)習(xí)速率 self.weights_input_to_hidden = np.random.normal(0.0, self.hidden_nodes**-0.5, ( self.hidden_nodes, self.input_nodes)) self.weights_hidden_to_output = np.random.normal(0.0, self.output_nodes**-0.5, (self.output_nodes, self.hidden_nodes)) self.lr = learning_rate # 隱藏層的激勵函數(shù)為sigmoid函數(shù),Activation function is the sigmoid function self.activation_function = (lambda x: 1/(1 + np.exp(-x))) def train(self, inputs_list, targets_list): # Convert inputs list to 2d array inputs = np.array(inputs_list, ndmin=2).T # 輸入向量的shape為 [feature_diemension, 1] targets = np.array(targets_list, ndmin=2).T # 向前傳播,F(xiàn)orward pass # TODO: Hidden layer hidden_inputs = np.dot(self.weights_input_to_hidden, inputs) # signals into hidden layer hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer # 輸出層,輸出層的激勵函數(shù)就是 y = x final_inputs = np.dot(self.weights_hidden_to_output, hidden_outputs) # signals into final output layer final_outputs = final_inputs # signals from final output layer ### 反向傳播 Backward pass,使用梯度下降對權(quán)重進行更新 ### # 輸出誤差 # Output layer error is the difference between desired target and actual output. output_errors = (targets_list-final_outputs) # 反向傳播誤差 Backpropagated error # errors propagated to the hidden layer hidden_errors = np.dot(output_errors, self.weights_hidden_to_output)*(hidden_outputs*(1-hidden_outputs)).T # 更新權(quán)重 Update the weights # 更新隱藏層與輸出層之間的權(quán)重 update hidden-to-output weights with gradient descent step self.weights_hidden_to_output += output_errors * hidden_outputs.T * self.lr # 更新輸入層與隱藏層之間的權(quán)重 update input-to-hidden weights with gradient descent step self.weights_input_to_hidden += (inputs * hidden_errors * self.lr).T # 進行預(yù)測 def run(self, inputs_list): # Run a forward pass through the network inputs = np.array(inputs_list, ndmin=2).T #### 實現(xiàn)向前傳播 Implement the forward pass here #### # 隱藏層 Hidden layer hidden_inputs = np.dot(self.weights_input_to_hidden, inputs) # signals into hidden layer hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer # 輸出層 Output layer final_inputs = np.dot(self.weights_hidden_to_output, hidden_outputs) # signals into final output layer final_outputs = final_inputs # signals from final output layer return final_outputs
以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持億速云。
免責聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。