您好,登錄后才能下訂單哦!
這篇文章給大家介紹怎么在Python中使用matplotlib實現(xiàn)可視化繪圖,內(nèi)容非常詳細,感興趣的小伙伴們可以參考借鑒,希望對大家能有所幫助。
python的五大特點:1.簡單易學,開發(fā)程序時,專注的是解決問題,而不是搞明白語言本身。2.面向?qū)ο?,與其他主要的語言如C++和Java相比, Python以一種非常強大又簡單的方式實現(xiàn)面向?qū)ο缶幊獭?.可移植性,Python程序無需修改就可以在各種平臺上運行。4.解釋性,Python語言寫的程序不需要編譯成二進制代碼,可以直接從源代碼運行程序。5.開源,Python是 FLOSS(自由/開放源碼軟件)之一。
matplotlib圖標正常顯示中文
為了在圖表中能夠顯示中文和負號等,需要下面一段設(shè)置:
import matplotlib.pyplot as plt plt.rcParams['font.sas-serig']=['SimHei'] #用來正常顯示中文標簽 plt.rcParams['axes.unicode_minus']=False #用來正常顯示負號
matplotlib inline和pylab inline
可以使用ipython --pylab
打開ipython命名窗口。
%matplotlib inline #notebook模式下 %pylab inline #ipython模式下
這兩個命令都可以在繪圖時,將圖片內(nèi)嵌在交互窗口,而不是彈出一個圖片窗口,但是,有一個缺陷:除非將代碼一次執(zhí)行,否則,無法疊加繪圖,因為在這兩種模式下,是要有plt
出現(xiàn),圖片會立馬show
出來,因此:
推薦在ipython notebook時使用,這樣就能很方便的一次編輯完代碼,繪圖。
為項目設(shè)置matplotlib參數(shù)
在代碼執(zhí)行過程中,有兩種方式更改參數(shù):
使用參數(shù)字典(rcParams)
調(diào)用matplotlib.rc()命令通過傳入關(guān)鍵字元祖,修改參數(shù)
如果不想每次使用matplotlib時都在代碼部分進行配置,可以修改matplotlib的文件參數(shù)??梢杂?code>matplot.get_config()命令來找到當前用戶的配置文件目錄。
配置文件包括以下配置項:
axex: 設(shè)置坐標軸邊界和表面的顏色、坐標刻度值大小和網(wǎng)格的顯示
backend: 設(shè)置目標暑促TkAgg和GTKAgg
figure: 控制dpi、邊界顏色、圖形大小、和子區(qū)( subplot)設(shè)置
font: 字體集(font family)、字體大小和樣式設(shè)置
grid: 設(shè)置網(wǎng)格顏色和線性
legend: 設(shè)置圖例和其中的文本的顯示
line: 設(shè)置線條(顏色、線型、寬度等)和標記
patch: 是填充2D空間的圖形對象,如多邊形和圓??刂凭€寬、顏色和抗鋸齒設(shè)置等。
savefig: 可以對保存的圖形進行單獨設(shè)置。例如,設(shè)置渲染的文件的背景為白色。
verbose: 設(shè)置matplotlib在執(zhí)行期間信息輸出,如silent、helpful、debug和debug-annoying。
xticks和yticks: 為x,y軸的主刻度和次刻度設(shè)置顏色、大小、方向,以及標簽大小。
線條相關(guān)屬性標記設(shè)置
用來該表線條的屬性
線條風格linestyle或ls | 描述 | 線條風格linestyle或ls | 描述 |
---|---|---|---|
‘-‘ | 實線 | ‘:' | 虛線 |
‘–' | 破折線 | ‘None',' ‘,'' | 什么都不畫 |
‘-.' | 點劃線 |
線條標記
標記maker | 描述 | 標記 | 描述 | |
---|---|---|---|---|
‘o' | 圓圈 | ‘.' | 點 | |
‘D' | 菱形 | ‘s' | 正方形 | |
‘h' | 六邊形1 | ‘*' | 星號 | |
‘H' | 六邊形2 | ‘d' | 小菱形 | |
‘_' | 水平線 | ‘v' | 一角朝下的三角形 | |
‘8' | 八邊形 | ‘<' | 一角朝左的三角形 | |
‘p' | 五邊形 | ‘>' | 一角朝右的三角形 | |
‘,' | 像素 | ‘^' | 一角朝上的三角形 | |
‘+' | 加號 | ‘\ | ‘ | 豎線 |
‘None','',' ‘ | 無 | ‘x' | X |
顏色
可以通過調(diào)用matplotlib.pyplot.colors()
得到matplotlib支持的所有顏色。
別名 | 顏色 | 別名 | 顏色 |
---|---|---|---|
b | 藍色 | g | 綠色 |
r | 紅色 | y | 黃色 |
c | 青色 | k | 黑色 |
m | 洋紅色 | w | 白色 |
如果這兩種顏色不夠用,還可以通過兩種其他方式來定義顏色值:
使用HTML十六進制字符串color='eeefff'
使用合法的HTML顏色名字('red','chartreuse'等)。
也可以傳入一個歸一化到[0,1]的RGB元祖。color=(0.3,0.3,0.4)
很多方法可以介紹顏色參數(shù),如title()。
plt.tilte('Title in a custom color',color='#123456')
背景色
通過向如matplotlib.pyplot.axes()
或者matplotlib.pyplot.subplot()
這樣的方法提供一個axisbg
參數(shù),可以指定坐標這的背景色。
subplot(111,axisbg=(0.1843,0.3098,0.3098)
基礎(chǔ)
如果你向plot()指令提供了一維的數(shù)組或列表,那么matplotlib將默認它是一系列的y值,并自動為你生成x的值。默認的x向量從0開始并且具有和y同樣的長度,因此x的數(shù)據(jù)是[0,1,2,3].
確定坐標范圍plt.axis([xmin, xmax, ymin, ymax])
上面例子里的axis()命令給定了坐標范圍。
xlim(xmin, xmax)和ylim(ymin, ymax)來調(diào)整x,y坐標范圍
%matplotlib inline import numpy as np import matplotlib.pyplot as plt from pylab import * x = np.arange(-5.0, 5.0, 0.02) y1 = np.sin(x) plt.figure(1) plt.subplot(211) plt.plot(x, y1) plt.subplot(212) #設(shè)置x軸范圍 xlim(-2.5, 2.5) #設(shè)置y軸范圍 ylim(-1, 1) plt.plot(x, y1)
疊加圖
用一條指令畫多條不同格式的線。
import numpy as np import matplotlib.pyplot as plt # evenly sampled time at 200ms intervals t = np.arange(0., 5., 0.2) # red dashes, blue squares and green triangles plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^') plt.show()
plt.figure()
你可以多次使用figure命令來產(chǎn)生多個圖,其中,圖片號按順序增加。這里,要注意一個概念當前圖和當前坐標。所有繪圖操作僅對當前圖和當前坐標有效。通常,你并不需要考慮這些事,下面的這個例子為大家演示這一細節(jié)。
import matplotlib.pyplot as plt plt.figure(1) # 第一張圖 plt.subplot(211) # 第一張圖中的第一張子圖 plt.plot([1,2,3]) plt.subplot(212) # 第一張圖中的第二張子圖 plt.plot([4,5,6]) plt.figure(2) # 第二張圖 plt.plot([4,5,6]) # 默認創(chuàng)建子圖subplot(111) plt.figure(1) # 切換到figure 1 ; 子圖subplot(212)仍舊是當前圖 plt.subplot(211) # 令子圖subplot(211)成為figure1的當前圖 plt.title('Easy as 1,2,3') # 添加subplot 211 的標題
figure感覺就是給圖像ID,之后可以索引定位到它。
plt.text()添加文字說明
text()可以在圖中的任意位置添加文字,并支持LaTex語法
xlable(), ylable()用于添加x軸和y軸標簽
title()用于添加圖的題目
import numpy as np import matplotlib.pyplot as plt mu, sigma = 100, 15 x = mu + sigma * np.random.randn(10000) # 數(shù)據(jù)的直方圖 n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75) plt.xlabel('Smarts') plt.ylabel('Probability') #添加標題 plt.title('Histogram of IQ') #添加文字 plt.text(60, .025, r'$\mu=100,\ \sigma=15$') plt.axis([40, 160, 0, 0.03]) plt.grid(True) plt.show()
text中前兩個參數(shù)感覺應(yīng)該是文本出現(xiàn)的坐標位置。
plt.annotate()文本注釋
在數(shù)據(jù)可視化的過程中,圖片中的文字經(jīng)常被用來注釋圖中的一些特征。使用annotate()方法可以很方便地添加此類注釋。在使用annotate時,要考慮兩個點的坐標:被注釋的地方xy(x, y)和插入文本的地方xytext(x, y)。[^1]
import numpy as np import matplotlib.pyplot as plt ax = plt.subplot(111) t = np.arange(0.0, 5.0, 0.01) s = np.cos(2*np.pi*t) line, = plt.plot(t, s, lw=2) plt.annotate('local max', xy=(2, 1), xytext=(3, 1.5), arrowprops=dict(facecolor='black', shrink=0.05), ) plt.ylim(-2,2) plt.show()
plt.xticks()/plt.yticks()設(shè)置軸記號
現(xiàn)在是明白干嘛用的了,就是人為設(shè)置坐標軸的刻度顯示的值。
# 導入 matplotlib 的所有內(nèi)容(nympy 可以用 np 這個名字來使用) from pylab import * # 創(chuàng)建一個 8 * 6 點(point)的圖,并設(shè)置分辨率為 80 figure(figsize=(8,6), dpi=80) # 創(chuàng)建一個新的 1 * 1 的子圖,接下來的圖樣繪制在其中的第 1 塊(也是唯一的一塊) subplot(1,1,1) X = np.linspace(-np.pi, np.pi, 256,endpoint=True) C,S = np.cos(X), np.sin(X) # 繪制余弦曲線,使用藍色的、連續(xù)的、寬度為 1 (像素)的線條 plot(X, C, color="blue", linewidth=1.0, line) # 繪制正弦曲線,使用綠色的、連續(xù)的、寬度為 1 (像素)的線條 plot(X, S, color="r", lw=4.0, line) plt.axis([-4,4,-1.2,1.2]) # 設(shè)置軸記號 xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi], [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$']) yticks([-1, 0, +1], [r'$-1$', r'$0$', r'$+1$']) # 在屏幕上顯示 show()
當我們設(shè)置記號的時候,我們可以同時設(shè)置記號的標簽。注意這里使用了 LaTeX。[^2]
移動脊柱 坐標系
ax = gca() ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.spines['bottom'].set_position(('data',0)) ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data',0))
這個地方確實沒看懂,囧,以后再說吧,感覺就是移動了坐標軸的位置。
plt.legend()添加圖例
plot(X, C, color="blue", linewidth=2.5, line, label="cosine") plot(X, S, color="red", linewidth=2.5, line, label="sine") legend(loc='upper left')
matplotlib.pyplot
使用plt.style.use('ggplot')
命令,可以作出ggplot風格的圖片。
# Import necessary packages import pandas as pd %matplotlib inline import matplotlib.pyplot as plt plt.style.use('ggplot') from sklearn import datasets from sklearn import linear_model import numpy as np # Load data boston = datasets.load_boston() yb = boston.target.reshape(-1, 1) Xb = boston['data'][:,5].reshape(-1, 1) # Plot data plt.scatter(Xb,yb) plt.ylabel('value of house /1000 ($)') plt.xlabel('number of rooms') # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit( Xb, yb) # Plot outputs plt.scatter(Xb, yb, color='black') plt.plot(Xb, regr.predict(Xb), color='blue', linewidth=3) plt.show()
給特殊點做注釋
好吧,又是注釋,多個例子參考一下!
我們希望在 2π/32π/3 的位置給兩條函數(shù)曲線加上一個注釋。首先,我們在對應(yīng)的函數(shù)圖像位置上畫一個點;然后,向橫軸引一條垂線,以虛線標記;最后,寫上標簽。
t = 2*np.pi/3 # 作一條垂直于x軸的線段,由數(shù)學知識可知,橫坐標一致的兩個點就在垂直于坐標軸的直線上了。這兩個點是起始點。 plot([t,t],[0,np.cos(t)], color ='blue', linewidth=2.5, line) scatter([t,],[np.cos(t),], 50, color ='blue') annotate(r'$\sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$', xy=(t, np.sin(t)), xycoords='data', xytext=(+10, +30), textcoords='offset points', fontsize=16, arrowprops=dict(arrow, connection)) plot([t,t],[0,np.sin(t)], color ='red', linewidth=2.5, line) scatter([t,],[np.sin(t),], 50, color ='red') annotate(r'$\cos(\frac{2\pi}{3})=-\frac{1}{2}$', xy=(t, np.cos(t)), xycoords='data', xytext=(-90, -50), textcoords='offset points', fontsize=16, arrowprops=dict(arrow, connection))
plt.subplot()
plt.subplot(2,3,1)
表示把圖標分割成2*3的網(wǎng)格。也可以簡寫plt.subplot(231)
。其中,第一個參數(shù)是行數(shù),第二個參數(shù)是列數(shù),第三個參數(shù)表示圖形的標號。
plt.axes()
我們先來看什么是Figure和Axes對象。在matplotlib中,整個圖像為一個Figure對象。在Figure對象中可以包含一個,或者多個Axes對象。每個Axes對象都是一個擁有自己坐標系統(tǒng)的繪圖區(qū)域。其邏輯關(guān)系如下:
plt.axes-官方文檔
axes() by itself creates a default full subplot(111) window axis.
axes(rect, axisbg='w') where rect = [left, bottom, width, height] in normalized (0, 1) units. axisbg is the background color for the axis, default white.
axes(h) where h is an axes instance makes h the current axis. An Axes instance is returned.
rect=[左, 下, 寬, 高] 規(guī)定的矩形區(qū)域,rect矩形簡寫,這里的數(shù)值都是以figure大小為比例,因此,若是要兩個axes并排顯示,那么axes[2]的左=axes[1].左+axes[1].寬,這樣axes[2]才不會和axes[1]重疊。
show code:
import matplotlib.pyplot as plt import numpy as np # create some data to use for the plot dt = 0.001 t = np.arange(0.0, 10.0, dt) r = np.exp(-t[:1000]/0.05) # impulse response x = np.random.randn(len(t)) s = np.convolve(x, r)[:len(x)]*dt # colored noise # the main axes is subplot(111) by default plt.plot(t, s) plt.axis([0, 1, 1.1*np.amin(s), 2*np.amax(s)]) plt.xlabel('time (s)') plt.ylabel('current (nA)') plt.title('Gaussian colored noise') # this is an inset axes over the main axes a = plt.axes([.65, .6, .2, .2], axisbg='y') n, bins, patches = plt.hist(s, 400, normed=1) plt.title('Probability') plt.xticks([]) plt.yticks([]) # this is another inset axes over the main axes a = plt.axes([0.2, 0.6, .2, .2], axisbg='y') plt.plot(t[:len(r)], r) plt.title('Impulse response') plt.xlim(0, 0.2) plt.xticks([]) plt.yticks([]) plt.show()
pyplot.pie參數(shù)
matplotlib.pyplot.pie
colors顏色
找出matpltlib.pyplot.plot中的colors可以取哪些值?
so-Named colors in matplotlib
matplotlib學習之設(shè)置線條顏色、形狀
for name,hex in matplotlib.colors.cnames.iteritems(): print name,hex
打印顏色值和對應(yīng)的RGB值。
plt.axis('equal')
避免比例壓縮為橢圓
autopct
How do I use matplotlib autopct?
autopct enables you to display the percent value using Python string formatting. For example, if autopct='%.2f', then for each pie wedge, the format string is '%.2f' and the numerical percent value for that wedge is pct, so the wedge label is set to the string '%.2f'%pct.
關(guān)于怎么在Python中使用matplotlib實現(xiàn)可視化繪圖就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,可以學到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。
免責聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。